Use of Pre-exposure Prophylaxis (PrEP) in pregnancy for primary prevention of HIV infection in women

Catherine Hankins MD PhD FRCPC CM
Deputy Director, Science
Amsterdam Institute for Global Health and Development,
Department of Global Health, University of Amsterdam
Honorary Professor
London School of Hygiene and Tropical Medicine, University of London

5th International Workshop on HIV and Women
Seattle, Washington, USA
February 21-22, 2015
Use of PrEP in pregnancy for primary prevention of HIV infection in women

- Conflicting evidence about HIV acquisition risk during pregnancy
- Risk of vertical transmission when HIV acquired in pregnancy or post-partum
- Sexual and reproductive health needs of serodiscordant couples
- Evidence on pre-exposure prophylaxis (PrEP) in women
- PrEP for pregnant HIV-negative women at higher risk of HIV exposure
Conflicting evidence about risk of HIV acquisition during pregnancy

- **Increased risk in pregnancy**

- **Non-significant increased risk**
 - Multi-site study of serodiscordant couples in Eastern and Southern Africa, adjusted for age, unprotected sex in previous month, and contraceptive use
 - [Mugo et al. *AIDS* 2011]
 - Similar findings from Uganda study

- **No increased risk** in large southern Africa study
 - [Reid et al. *J Acq Imm Def Syn* 2011]

- Uganda and Zimbabwe study: no increased risk and evidence of a **protective effect** of pregnancy at one site
 - [Morrison et al. *AIDS* 2007]
Recent evidence about risk of HIV acquisition during pregnancy

Systematic review and meta-analysis based on 19 cohorts (22,908 person-years):

- Incidence 4.7/100 PY in pregnancy and 2.9/100 PY postpartum
- 3.8/100 person-years pregnancy/postpartum (95%CI 3.0-4.6)
- Pooled cumulative HIV incidence higher in African than non-African countries 3.6% vs 0.3% p<0.001
- HIV risk was *not significantly higher* in pregnant (HR 1.3, 95%CI 0.5-2.1) or postpartum women (HR 1.1, 95%CI 0.6-1.6) than among non-pregnant, non-postpartum women in 5 studies
- **Conclusion:** pregnancy and postpartum are times of persistent high HIV risk

 [Drake et al *PLoS Medicine* 2014]

Secondary analysis of pooled data from 6 community cohorts (178,000 person-years):

- Pregnant women have a lower risk of acquiring HIV (both in the periods before and after widespread PMTCT scale-up) than women not pregnant (HRR 0.79, 95%CI 0.70-0.89).

 [Marston et al *PLoS One* December 2013]
Discordant couples in sub-Saharan Africa

- In sub-Saharan Africa, at least half of people living with HIV (PLHIV) in stable relationships have a seronegative partner

 [Chemaitelly et al *Sex Trans Inf* 2012]

- Population-based estimates of serodiscordance range from 2% (Rwanda) to 13% (Zimbabwe, Lesotho)

 [DHS surveys cited in Dunkle et al *Lancet* 2008]

- Men and women equally likely to be the index (HIV-positive) partner in a serodiscordant couple

 [Ewayo et al *Lancet Infect Dis* 2012]

- Couples HIV testing and counselling (CHTC) - *risk assessment with sensitivity to foster facilitated disclosure, avoid blame, counsel, and refer to HIV care and prevention services* - reduces HIV incidence

Serodiscordant couples: where does HIV come from?

- Estimated proportion of all HIV transmission that arises within serodiscordant couples ranges from 10% in Kenya to 56% in Rwanda

 [Bishop and Foreit. Health Policy Initiative 2010]

- Zambia DNA sequencing: 87% of new infections in discordant couples were acquired from the HIV-positive partner

 [Allen et al. AIDS 2003]

- 14-site study in eastern and southern Africa: 64% of seroconversions in couples were linked through viral sequencing

 [Celum et al. NEJM 2010]

- HPTN 052 trial provides recent data

 [Cohen et al. NEJM 2011]
HPTN 052: HIV-1 Transmission
(Cohen et al NEJM 2011)

39 partners became infected with HIV

28 acquired HIV from their partner

11 acquired HIV from a partner outside the couple

96% reduction

1763 stable, healthy, serodiscordant, sexually active couples in 9 countries
CD4 count: 350 to 550 cells/mm³

randomised for the HIV+ partner to:
• start ART immediately or
• delay until CD4 250

p < 0.001
Risk of vertical transmission when HIV acquired in pregnancy or post-partum

- Increased viral load associated with acute infection exposes the foetus to a high risk of *in utero* mother-to-child transmission

 [Garcia et al NEJM 1999; Birkhead et al Obstet Gynecol 2010]

- Acute infection in the post-partum period is associated with higher risk of mother-to-child transmission

 [Moodley et al. J Infect Dis 2011]

- In African cohorts, risk significantly higher among women with incident versus chronic infection in postpartum (OR 2.9, 95% CI 2.2-3.9) or in postpartum/pregnancy periods combined (OR 2.3, 95%CI 1.2-2.4)

 [Drake et al PLoS Medicine 2014]

- The challenge is to identify those women most at risk of acquiring HIV during conception, pregnancy, and breast feeding
Use of PrEP in pregnancy for primary prevention of HIV infection in women

- Conflicting evidence about HIV acquisition risk during pregnancy
- Risk of vertical transmission when HIV acquired in pregnancy or post-partum
- Sexual and reproductive health needs of serodiscordant couples
- Evidence on pre-exposure prophylaxis (PrEP) in women
- PrEP for pregnant HIV-negative women at higher risk of HIV exposure
Sexual and reproductive health needs of serodiscordant couples

- Preconception care and counselling for those wishing to conceive; infertility treatment tailored to specific needs

- Safer conception options:
 - Risk-free for HIV-negative male partner:
 - artificial insemination (AI) \([low\ technology\ method:\ timed,\ self-administered,\ vaginal\ insemination]\)
 - assisted reproductive techniques \([in-vitro\ fertilisation\ (IVF),\ intracytoplasmic\ sperm\ injection\ (ICSI)]\) for bilateral tube blockage or male factor infertility
 - Risk-free for HIV-negative female partner:
 - Donor sperm (HIV-negative donor)
 - Sperm wash/preparation followed by AI or IVF/ICSI
Sexual and reproductive health needs of serodiscordant couples

Risk-reduction options:

- Timed unprotected intercourse limited to fertile period
- ART for 6 months for HIV-positive partner to achieve undetectable viral load before conception
- Periconception PrEP for HIV-negative male partner and/or VMMC >6 weeks before
- Periconception pre-exposure prophylaxis (PrEP) for HIV-negative female partner

Having achieved HIV-free conception, how to:

- remain discordant (non-penetration, consistent condom use, ART, PrEP)
- prevent mother-to-child transmission (ART, PrEP)
Antiretroviral drugs to prevent HIV transmission to pregnant women

Antiretroviral therapy for HIV-positive male partners to reduce risk of onward HIV transmission

- **TasP**: treatment as prevention:
 population-level benefits of lower community viral load as ART is scaled up according to national eligibility criteria, e.g. Hlabisa, reduces the probability of encountering an infectious HIV+ male partner.

- **T4P**: early treatment for prevention:
 Individual-level benefit of reduced transmission before CD4+ cell count falls to eligibility, e.g. 500 cells/μL.

- **test and treat**: offering ART to all men who test HIV-positive regardless of CD4 count who have pregnant partners.

Antiretroviral prophylaxis for HIV-negative pregnant women to reduce risk of HIV acquisition

- **PrEP** to prevent transmission from men to women (during the first 6 months of ART until partner’s viral load is undetectable).
Antiretroviral therapy policy:
CD4 count threshold for initiation
Challenges in reaping the prevention benefits of ART: suboptimal viral suppression

US treatment cascade - 28% virally suppressed

- HIV infected: 1,178,350 (100%)
- HIV diagnosed: 941,950 (79%)
- Linked to HIV care: 725,302 (62%)
- Retained in HIV care: 480,395 (41%)
- On ART: 426,590 (36%)
- Suppressed viral load (equal or less than 200): 328,475 (28%)

West Africa treatment cascade - 10% virally suppressed

- PLWHA: 100%
- Access to screening: 75%
- Actually do the test: 70%
- Fetch their results: 65%
- Are supported: 60%
- Benefit from ARV treatment: 55%
- Remain on ARV (death, loss of sight): 40%
- Have access to a second line treatment: 10%

Adapted from Wilson and Fraser 2013
Use of PrEP in pregnancy for primary prevention of HIV infection in women

- Conflicting evidence about HIV acquisition risk during pregnancy
- Risk of vertical transmission when HIV acquired in pregnancy or post-partum
- Sexual and reproductive health needs of serodiscordant couples
- Evidence on pre-exposure prophylaxis (PrEP) in women
- PrEP for pregnant HIV-negative women at higher risk of HIV exposure
Pre-exposure prophylaxis strategies for women

- **Tenofovir (TDF)**
- **Tenofovir/emtricitabine (TDF/FTC)**

Topical PrEP: 1% tenofovir gel

Injectable PrEP: Phase 2 trials of intramuscular rilpivirine (q8 weeks) or GSK744 (q12 weeks)

Partners PrEP

- **CAPRISA 004**

- **ASPIRE and IPM trials**

- **Partners**

- **TDF2**
Pre-Exposure Prophylaxis for Women as of February 2015

<table>
<thead>
<tr>
<th>Trial</th>
<th>Country</th>
<th>1% Tenofovir vaginal gel</th>
<th>Oral TDF (tenofovir) daily tablets</th>
<th>Oral TDF/FTC (emtricitabine) daily tablets</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPRISA 004</td>
<td>South Africa</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VOICE gel [daily]</td>
<td>Uganda, South Africa, Zimbabwe</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FACTS 001</td>
<td>South Africa</td>
<td>?</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fem PrEP</td>
<td>Ken, SA, Tanz</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>VOICE oral</td>
<td>Uga, SA, Zim</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Partners PrEP</td>
<td>Kenya, Uganda</td>
<td>-</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td>TDF-2</td>
<td>Botswana</td>
<td>-</td>
<td>-</td>
<td>✔</td>
</tr>
</tbody>
</table>

Hankins
Results of placebo-controlled randomised controlled trials assessing ARV PrEP effectiveness

<table>
<thead>
<tr>
<th>Prevention in injecting drug users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangkok tenofovir study: daily oral tenofovir (injecting drug users in Thailand)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevention of mother-to-child transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACTG076: zidovudine to mother during pregnancy and labour and infant (HIV-positive pregnant women in USA and France)</td>
</tr>
<tr>
<td>Thai AZT trial: zidovudine to mother during pregnancy and labour (HIV-positive pregnant women in Thailand)</td>
</tr>
<tr>
<td>HIVNET012: single dose nevirapine to mothers and infants (HIV-positive pregnant women in Uganda)</td>
</tr>
<tr>
<td>DITRAME: zidovudine to mother during pregnancy, labour, and post partum (HIV-positive pregnant women in Côte d’Ivoire and Burkina Faso)</td>
</tr>
<tr>
<td>Africa AZT: zidovudine to mother during pregnancy and labour (HIV-positive pregnant women in Côte d’Ivoire)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sexual transmission prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partners PrEP: daily emtricitabine and tenofovir (serodiscordant couples in Kenya and Uganda)</td>
</tr>
<tr>
<td>Partners PrEP: daily oral tenofovir (serodiscordant couples in Kenya and Uganda)</td>
</tr>
<tr>
<td>TDF2: daily emtricitabine and tenofovir (heterosexual men and women in Botswana)</td>
</tr>
<tr>
<td>iPrEx: daily emtricitabine and tenofovir (men who have sex with men in the Americas, Thailand, and South Africa)</td>
</tr>
<tr>
<td>CAPRISA 004: coital tenofovir gel (women in South Africa)</td>
</tr>
<tr>
<td>MTN003/VOICE: daily tenofovir gel (women in South Africa, Uganda, and Zimbabwe)</td>
</tr>
<tr>
<td>FEMPrEP: daily emtricitabine and tenofovir (women in Kenya, South Africa, and Tanzania)</td>
</tr>
<tr>
<td>MTN003/VOICE: daily emtricitabine and tenofovir (women in South Africa, Uganda, and Zimbabwe)</td>
</tr>
<tr>
<td>MTN003/VOICE: daily tenofovir (women in South Africa, Uganda, and Zimbabwe)</td>
</tr>
</tbody>
</table>
Explaining diverse trial findings

- Actual strength of the intervention
- Host factors
- Trial population behavioural characteristics (risk, likely adherence, retention)
- Level of HIV exposure:
 - assumed equivalence across study arms
 - challenge of measurement (self-report, proxy measures of unprotected sex – STI, pregnancy, semen biomarkers)
- Intervention dose: [triangulated data]
 - Prospective objective measures: electronic devices, unannounced product counts
 - Biological measures: drug levels in plasma, CVL, vaginal tissue
 - Participant self-report

Koblin, Andrasik, and Austin. *JAIDS* 2013
Systemic Versus Topical Administration

Tenofovir and emtricitabine are phosphorylated intracellularly to form active agents that inhibit HIV replication.

Tenofovir diphosphate concentrations are:
- 100-fold higher in rectal tissue than in cervicovaginal tissue with oral TDF/FTC [Patterson 2011]
- 1000-fold higher in vaginal tissues with tenofovir gel than with oral TDF/FTC [Dumond 2007, Gengiah 2012]

Figure 3. Boxplots of TFV and TFV-DP concentrations by anatomic site.

Hendrix et al. *PLoS ONE* 2013
Adherence drives trial results:
Consistent adherence to daily drug gives high levels of protection

<table>
<thead>
<tr>
<th></th>
<th>% of blood samples with tenofovir detected</th>
<th>HIV protection efficacy in randomized comparison</th>
<th>HIV protection estimate with high adherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partners PrEP FTC/TDF arm</td>
<td>81%</td>
<td>75%</td>
<td>90% (tenofovir in blood)</td>
</tr>
<tr>
<td>TDF2</td>
<td>79%</td>
<td>62%</td>
<td>78% (prescription refill)</td>
</tr>
<tr>
<td>BTS</td>
<td>67%</td>
<td>49%</td>
<td>70% - 84% (tenofovir in blood / pill count)</td>
</tr>
<tr>
<td>iPrEx</td>
<td>51%</td>
<td>44%</td>
<td>92% (tenofovir in blood)</td>
</tr>
<tr>
<td>FEM-PrEP & VOICE</td>
<td><30%</td>
<td>No HIV protection</td>
<td>N/A</td>
</tr>
</tbody>
</table>

70% of women in the Fem-PrEP trial reported feeling at little risk for acquiring HIV despite a nearly 5% annualized HIV incidence

Baeten et al 2013

Van Damme CROI 2012, LB32 More info NEJM
Socio-ecological framework of factors affecting perceptions about ARV for PrEP, by levels of influence (VOICE-C study)

<table>
<thead>
<tr>
<th>Social-Structural</th>
<th>HIV stigma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV/AIDS trivialisation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Community</th>
<th>ARV for treatment versus PrEP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rumors around research</td>
</tr>
<tr>
<td></td>
<td>Potency and monetary value of ARVs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organisational</th>
<th>Researchers’ motivations/mistrust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investigational products (active vs. placebo)</td>
</tr>
<tr>
<td></td>
<td>Product ingredients; mechanism of action</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household</th>
<th>Misattribution of seropositivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suspicion; discrimination</td>
</tr>
<tr>
<td></td>
<td>Privacy needs for storage and usage</td>
</tr>
<tr>
<td></td>
<td>Disclosure and (lack of) support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual</th>
<th>ARV potency, protection, safety, side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dosage form preference</td>
</tr>
</tbody>
</table>

Van der Straten et al. JAIS 2014
Risk of increased exposure and effectiveness of PrEP - 1

Is PrEP’s protective effect reduced when challenged with greater or more frequent HIV exposure? [threshold?]

- HIV incidence in the placebo arms of trials demonstrating PrEP effectiveness was 2-4 per 100 person-years compared to 4-5 per 100 person-years in those that did not

- Analysis undertaken within the Partners PrEP trial to test this hypothesis
 - Composite risk score defined, e.g. partner viral load >50,000 copies/ml
 - Higher risk sub-groups confirmed by comparing HIV incidence with full study placebo arm incidence

Murnane et al AIDS 2013
Risk of increased exposure and effectiveness of PrEP - 2

<table>
<thead>
<tr>
<th></th>
<th>Placebo arm incidence</th>
<th>PrEP efficacy</th>
<th>95%CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall study</td>
<td>2.0 per 100 PY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF</td>
<td>67%</td>
<td>44-81%</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>TDF/FTC</td>
<td>75%</td>
<td>55-87%</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Partner VL>50,000</td>
<td>3.9 per 100 PY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF</td>
<td>76%</td>
<td>30-92%</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>TDF/FTC</td>
<td>78%</td>
<td>35-93%</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Women with partner VL>50,000</td>
<td>5.4 per 100 PY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF</td>
<td>84%</td>
<td>29-96%</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>TDF/FTC</td>
<td>72%</td>
<td>13-91%</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Murnane et al *AIDS* 2013
Use of PrEP in pregnancy for primary prevention of HIV infection in women

- Conflicting evidence about HIV acquisition risk during pregnancy
- Risk of vertical transmission when HIV acquired in pregnancy or post-partum
- Sexual and reproductive health needs of serodiscordant couples
- Evidence on pre-exposure prophylaxis (PrEP) in women
- PrEP for pregnant HIV-negative women at higher risk of HIV exposure
PrEP in pregnancy for women - 1

Issues:

- Women participating in clinical trials were HIV-negative, committed at enrolment to contraception, and stopped product if they became pregnant.

- Side effects: good track record TDF and FTC in non-pregnant HIV-negative women, in pregnant and breastfeeding HIV+ women, as part of combination antiretroviral therapy.

- Few safety data on tenofovir gel, dapivirine ring, or injectables (rilpivirine and GSK 744) in pregnancy.

- Integration of HIV, PrEP, family planning and other reproductive health services are needed for quality programming.
PrEP in pregnancy for women - 2

Challenges:

- Identifying women at high on-going risk of HIV infection
- Training providers and providing risk profile assessment tools
- Assessing motivation and adherence capacity
- Ruling out acute infection in order to prevent development of drug resistance that could:
 - reduce eventual antiretroviral treatment options
 - be transmitted to the foetus
Baseline:

• Document HIV-negative status
• Measure serum creatinine (Cr), calculate estimated Cr clearance (Cl) to assess renal function. [Do not use if CrCl is less than 60ml/min]
• Conduct STI screen, check hepatitis B infection and vaccination status
• Assess motivation and explore adherence support needs

If attempting pregnancy:

• Recommend monthly visits for HIV testing, adherence support. Come for unscheduled visit if menses missed.
• Daily oral TDF/FTC beginning one month before attempting conception
Baseline and follow up monitoring - 2

At least every 3 months:

• Repeat HIV testing, assess for signs and symptoms of acute infection
• Repeat pregnancy test (and STI screen if indicated)
• Assess side effects, HIV risk behaviours, adherence challenges
• Explore women-driven solutions supporting adherence and risk reduction strategies, including condom use

At least every 6 months:

• Monitor CrCl

[In the USA, report to Antiretroviral Pregnancy Registry when pregnancy confirmed, if on PrEP:

http://apregistry.com/ Phone: 1 800 258 4263]
Pregnancy and post-partum

• Continue PrEP:
 • for at least one month after a conception is achieved
 • through pregnancy if at risk of seroconversion during pregnancy

• Postpartum options:
 • discuss risks and benefits of breastfeeding
 • determine if partner’s viral load is undetectable, if condoms can be used correctly and consistently
 • discuss continuing on PrEP to prevent seroconversion during breastfeeding and beyond
Use of PrEP in pregnancy for primary prevention of HIV infection in women

- Conflicting evidence about HIV acquisition risk during pregnancy
- Risk of vertical transmission when HIV acquired in pregnancy or post-partum
- Sexual and reproductive health needs of serodiscordant couples
- Evidence on pre-exposure prophylaxis (PrEP) in women
- PrEP for pregnant HIV-negative women at higher risk of HIV exposure
With thanks for ideas, photos, and slides to:

- Myron Cohen
- Jared Beaton
- Salim Abdool Karim
- Mitchell Warren
- Lut Van Damme
- Ariane van Straten

- Connie Celum
- Myron Cohen
- Quarraisha Abdool Karim
- Zeda Rosenberg
- Erika Aaron

Thank you for your attention!