Gut microbiome, HIV-exposure, and vaccine responses in South African infants

Jerome Wendoh Milimu, MSc

Jaspan Lab

University of Cape Town, South Africa
What we know:

- **Gut Microbiome** plays a key role in the normal development of the immune system development (Mackie et al., 1999; Clemente et al., 2012).

- **Feeding affects and gut microbiome** (Ardeshir et al., 2014).

- **Maternal Microbiome influences neonatal microbiome** (Joann Romano-Keeler and Jörn-Hendrik Weitkamp., 2014).
• HIV-infected adults have altered gut and vaginal microbiome (Vujkovic-Cvijin et al., 2013; Dillon, 2014; Mutlu, 2014).

• HIV-exposed infants receive cotrimoxazole (CTM) prophylaxis against Pneumocystis jirovecii pneumonia (PCP) at 6 weeks.

• HIV-exposed uninfected (HEU) infants have altered vaccine responses compared to HIV-unexposed (HU) infants (Epalza, 2010; Koyanagi 2011; Kidzeru et al., 2014).
Hypothesis:

HIV-exposed uninfected (HEU) infants have altered immune responses due to dysbiosis of the gut microbiome

Aims

• To characterize the infant gut microbiome of HIV exposed uninfected (HEU) infants versus HIV unexposed (HU) infants.

• To relate vaccine-specific T cell responses with the gut microbial profiles (A pilot study).
Hypothesis: **HEU have impaired immune responses due to dysbiosis of the gut microbiome**

Aims

- To characterize the infant gut microbiome of HIV exposed uninfected infants versus HIV unexposed infants.
- To relate vaccine-specific T cell responses with the gut microbial profiles.
Larger African cohort study (INFANT Study)

Babies
- All born vaginally
- HIV Negative; DNA PCR at birth

500 HIV-exposed uninfected (HEU) exclusively breastfed infants

100 HIV-exposed uninfected (HEU) formula fed infants

150 HIV-unexposed (HU) exclusively breastfed infants
Methodology:

Fecal DNA extraction (Power Soil DNA Isolation Kit - MO BIO)

PCR amplified V6 hypervariable region of 16s rRNA

Sequenced; Illumina Hiseq platform

Data analysis: QIIME 1.8.0
- Pick OTUs at 97% ID
- Assign taxonomy (GreenGenes)
- Compute diversity

Statistical Analysis: R
Preliminary analysis:

HIV exposed uninfected (HEU) breastfed infants (n = 65)

Samples analyzed (52)

HIV exposed uninfected (HEU) formula fed infants (n = 31)

Samples analyzed (25)

HIV unexposed (HU) breastfed infants (n = 17)

Samples analyzed (16)

Time points

• D4-7
• WK 4
• WK 7
• WK 15
• WK 36

• 113 samples were sequenced (Illumina Hiseq)
• 18 samples had < 100 000 reads (cutoff) and were excluded from downstream analyses, leaving 95 samples.

• Across the 95 samples, 5712 OTUs were identified.
• Mean reads/sample : 562605.558
Shannon alpha diversity measures for HEU and HU (All time points)
Beta diversity: MDS analysis showing clustering for HU (All time points)

HIV exposure
- HIV unexposed (HU)
- HIV exposed (HEU)

Feeding
- breast
- formula
Relative abundance of gut microbiome between HEU and HU (All time points)

- Difference in the most abundant taxa observed at multiple levels.
- Here shown at family level between the two groups.
Unsupervised hierarchical clustering showing differentially abundant OTUs (all time points)

- Controlled for feeding
- OTUs filtered prior to differential abundance testing.
- OTUs included when present in 25% of samples (metagenomeSeq)

- Log2 Transformed OTUs
- FDR ≤0.05
Linear Discriminant analysis at Week 1

Shows potential biomarkers for HIV unexposed infants at week 1
Aims

• To characterize the infant gut microbiome of HIV exposed uninfected infants versus HIV unexposed infants

• To relate vaccine-specific T cell responses with the gut microbial profiles

A Pilot study: Gut microbiome and vaccine (BCG) responses in vaginally delivered, HIV unexposed infants at 6 weeks of age
Gut microbiome versus BCG vaccine specific T cell responses (HIV unexposed (HU) at 6 weeks)

Parameters measured:
- T Cell proliferation (Ki67)
- Intracellular cytokine production (IFNg, IL-2, IL-13, IL-17)

Findings:
- Multiple organisms significantly correlated with increased BCG-specific CD4+ and CD8+ T cell proliferation and cytokine expression
OTUs differentially abundant (FDR ≤0.05) between HU infants with high or low CD4 IL-2 expression at 6 weeks.

- OTU_48
- OTU_40
- OTU_86
- Bacteroides
- B. fragilis
- CD4+ IL-2+
- Lactobacillus
- Clostridium
- Prevotella
- Bacteroides
- B. fragilis

No clustering by feeding.

FDR ≤0.05

Feeding
- BF
- MF

CD4+ IL-2+
- high
- low
B. Fragilis diff. abundance by “high” vs “low” CD4+ IL-2+ expression at week 6

B. fragilis has been shown to induce Foxp3+ Tregs subsets - could dampen immune responses. (Round and Mazmanian et al., 2010).
Conclusion

• There are differences in diversity and relative abundance of gut microbiota between HEU and HU

• An altered gut microbiome is associated with impaired immune responses to early childhood vaccines in HU infants

• We will further investigate whether the gut microbial profiles are associated with the altered vaccine responses observed in HEU
Acknowledgements

Heather Jaspan

Katie Viljoen
Nicola Mulder
Alain Stinzi
James Butcher
Gerrit Botha

Ulas Karaoz
Eoin Brodie

Clive Gray
Bill Cameron
Alash’le Abimiku

The entire INFANT study team
Mothers and babies

Elvis Kidzeru

Donald Nyangahu