Optimal TDM and Pharmacodynamics of Mitotane in Adrenocortical cancer in children and Adults

Stephen P. Ackland
Madhu Garg, Jennette Sakoff, Catherine Johnson

Dept of Medical Oncology, Calvary Mater Newcastle Hospital, Faculty of Health, University of Newcastle, NSW Australia
Hunter Cancer Research Alliance
www.hcralliance.org.au

Partners working together
Adrenocortical Cancer (ACC)

- relatively uncommon (4-12 per million population), aggressive tumour often detected in advanced stage.
- poor prognosis: 5 yr survival - 15%.
- stages (I-III) – surgical resection.
- ~30-40% stage 4, not curable.
- chemotherapy
 - disappointing outcomes
 - streptozotocin or etoposide/dox/CDDP

1. Fassnacht et al NEJM 2012
Mitotane

- Mitotane (o,p’-DDD)
 - 1,1-(o,p’- dichlorodiphenyl)-2,2-dichloroethane)
 - since 1960.
- orally active - analog of insecticide DDT
- only active systemic therapy for ACC
 - advanced & adjuvant
- drug of choice for unresectable, recurrent and metastatic ACC (+/- chemotherapy).
Mitotane

• partial responses 25-30% of patients, rare CR
• kills adrenal cells
 – mechanism unknown
• reduces hormone production
 – blocks cortisol synthesis by inhibiting cholesterol side chain cleavage and 11 β-hydroxylation
• Substantial toxicity
 • primarily neurological (cerebellar, cerebral) and GI
 – lethargy, somnolence, ataxia, dizziness, vertigo
 • related to high plasma levels
Mitotane Metabolism

• ~40% of dose absorbed
 – 60% → feces
• 10% → urine (water soluble)
• 1-17% excreted via bile
• t1/2 18-159 days

source: BMS product info Lysodren®
Mitotane Metabolism

- Metabolic activation within liver results in formation of 2 metabolites:
 - α hydroxylation \rightarrow DDE
 - β hydroxylation \rightarrow DDA (considered active, adrenolytic)

Metabolites

• True effect of metabolites in conjunction with mitotane is currently not known
 • toxicity
 • anti-tumour efficacy

• Measurement of mitotane and metabolites DDA and DDE could provide a better understanding of mitotane PK and PD and guide effective management.
Importance of Plasma Mitotane Measurement

- Mitotane—usual starting dose of 0.5-3 g/d & escalation over several weeks/months
- dose-effect relationship
- Trough concentration in plasma (Cp):
 - Cp <14 mg/L is sub-therapeutic.
 - Cp >20 mg/L is potentially toxic (CNS, BM, GI & renal).
 - Cp 14-20 mg/L is ideal (55-66% objective response rate).
- 5-10 times inter-patient variability of Cp with dose
Cp Mitotane >14 for therapeutic effect

mitotane monotherapy n= 27

Figure 3 Actuarial survival rates from time of diagnosis in 29 patients with evaluable tumour (no operation, n = 5; subtotal operation, n = 24) according to serum levels of mitotane (mitotane therapy given early in the course of their disease). High (H) = serum levels >14 mg l⁻¹; low (L) = serum levels <14 mg l⁻¹. H vs L, P < 0.001.
Therapeutic Drug Monitoring

TDM - warranted to achieve best therapeutic index
 • has been used in European centres
 • recommended for targeting & maintaining Cp 14-20mg/L1,2
 • however not routinely used in Australia
 • We are the only centre in the southern hemisphere to provide TDM of mitotane and metabolites3.

Previous Data

- 74 patients, >450 levels
 - F/M 44/30, median age 50; 3 children
- starting dose 1-8 g/day (physicians choice)
- 42 patients (24/18 F/M, 3 children) achieved therapeutic range
 - dose required 6.1 ± 3.2 (mean ± SD) g/day.
- Time to achieve therapeutic range:
 - adults 5.9 ± 3.7 months
 - children 1.5 ± 0.1 months.
- Toxic levels (>20 μg/ml):
 - 21 patients(all 3 children)
Mitotane Dose and Plasma Levels

Substantial interpatient variability in mitotane and metabolite levels (mean ± SD)
Patient mitotane and metabolite levels

a

Patient 1

- DDA
- Mitotane
- DDE

b

Patient 2

- DDA
- Mitotane
- DDE
Patient mitotane and metabolite levels

Master IJ, 13 y
Previous data: Conclusions

- It takes a variable time to achieve therapeutic range
 - 2-6 months
 - some patients overshoot despite TDM.
- substantial inter-patient variability in mitotane & metabolite levels
- role of metabolites in dose adjustment & toxicity unclear
- mitotane and DDE appear to be fat soluble
 - clearance appears slow (weeks)

In a prospective study we aimed to improve time to Cp>14 and to identify factors that account for variability in mitotane kinetics by correlating kinetic parameters with pre-treatment factors.
Recommended Dose Adjustment According to CNS/GI Side Effects and Plasma Mitotane Levels

<table>
<thead>
<tr>
<th>Plasma Mitotane Level</th>
<th>CNS (Grade 2) / GI (Grade 3/4) Present</th>
<th>CNS (Grade 3/4) Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>Increase daily dose by 1 g*</td>
<td>Reduce daily dose by 1 g</td>
</tr>
<tr>
<td><14 mg/L</td>
<td></td>
<td>Stop mitotane†</td>
</tr>
<tr>
<td>14–20 mg/L</td>
<td>Maintain dose</td>
<td>Reduce daily dose by 1.5 g</td>
</tr>
<tr>
<td>>20 mg/L</td>
<td>Reduce daily dose to 50–75% of the most recent dose</td>
<td>Stop mitotane†</td>
</tr>
</tbody>
</table>

*Up to the maximum tolerated dose; †Until symptom resolution (grade 0 or 1)
Prospective Clinical TDM Study: Aims

- To determine the relationship between mitotane and metabolite levels and toxicity, and confirm the published relationship with response.

- Identify factors accounting for variability in mitotane PK and toxicity.

- Define optimal TDM approach → Cp 14-20 quickly by frequent, informed dose escalation.
Prospective Clinical TDM Study: Plan

- ACC pts multiple institutions
- collect demographic data
- begin mitotane at 1g/day → 2g/day after 1 week
- Cp at 2 weeks
 - <5 → triple dose
 - 5-10 → double dose
 - 10-14 → 1.5x dose
- repeat Cp 4 weeks after dose escalation, then every 2-4 weeks till Cp>14
- Cp >20: stop, rebegin lower dose
Prospective Clinical TDM Study - data so far

- 24 sites across Australia and one in Singapore
- 15 patients to date:
 - F/M 10/5, median age 41 (9-69)
 - 3 children
- starting dose 1-6 g/day, kids 1-4 g/day
- 9 patients (6/3 F/M, 2 children) achieved therapeutic range to date
 - dose required 5.9 ± 0.3 (mean \pm SD) g/day
 - adults 5.8 ± 2.0 months
 - kids 2.0 ± 1.6 months
- Toxic levels ($>20 \, \mu g/ml$) : 5 patients (2 children)
PK Assessment
(45 yo female, 1st dose)

<table>
<thead>
<tr>
<th>Age</th>
<th>Time (hr)</th>
<th>DDD conc (mg/L)</th>
<th>Mitotane dose (gm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.73</td>
<td>0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.44</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>25.08</td>
<td></td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

PK Variables

- Half-life (hr): 8.66
- AUC 0-t: 25.80
- Clearance L/hr: 3.88

![AUC (Conc-Time) curve](attachment:image.png)
Conclusions

• more rigorous TDM with specific advice has not changed:
 – time to Cp>14
 – proportion of pts with Cp>20

• Yet to formally assess:
 – conformance with advice
 – toxicity
 – predictive parameters for toxicity/dose-level relationship

• Need to continue study to n= 45-60 (as planned)
Conclusions (2)

- single dose t1/2 is different to repeated dosing
 - likely due to distribution into fat

- role of metabolites?
 - is DDA active (recent data → no)
 - do they affect distribution and effect of mitotane?
Collaborators and Funding

Madhu B.Garg
Catherine Johnson
Jennette Sakoff

Funding:

Calvary Mater Newcastle Research Grants
Hunter Medical Research Institute (HMRI) Newcastle, NSW, Australia
University Of Newcastle, NSW, Australia

CHIEF INVESTIGATOR:
Dr. Stephen Ackland,
Calvary Mater Newcastle Hospital NSW

CO-INVESTIGATORS:
Madhu Garg
Calvary Mater Newcastle Hospital NSW
Dr Jennette Sakoff
Calvary Mater Newcastle Hospital
Dr Lyndal Tacon/ prof Rory Clifton
Royal North Shore Hospital, NSW
Dr Andrew McLachlan
University of Sydney,NSW

ASSOC INVESTIGATORS:
Dr Geoff McCowage/ Dr Della Pozza
The Children’s Hospital (Westmead), NSW
Dr Michael Stevens
Westmead Children’s Hospital, NSW
Prof. Michael Friedlander
Prince of Wales Hospital
Prof. Mark McLean
University of Western Sydney
UWS/Blacktown Hospital, NSW
A/Prof. Desmond Yip
Canberra Hospital, ACT

Dr Antonino Bonaventura
Calvary Mater Newcastle Hospital NSW
Dr David Torpy
Royal Adelaide Hospital, SA
Dr Robert Blum / (Dr Mark Warren)
Bendigo Health Care Group, VIC
Dr Andrew Hill
Gold Coast Hospital, QLD
Dr Thomas Van Hagun
Royal Perth Hospital, WA
Dr Sheryl Sim
North West Regional Hospital, TAS