Prediction of Intracellular (IC) Tenofovir Diphosphate (TFV-DP) and Emtricitabine Triphosphate (FTC-TP) Concentrations Following Drug Intake Cessation

Laura Dickinson¹, H. Manisha Yapa², Akil Jackson², Graeme Moyle², Laura Else¹, Alieu Amara¹, Saye Khoo¹, David Back¹, Zeenat Karolia², Chris Higgs², Marta Boffito²

¹ Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK; ² St Stephen’s Centre, Chelsea & Westminster Foundation Trust, London, UK

16th International Workshop on Clinical Pharmacology of HIV & Hepatitis Therapy Alexandria, VA, USA. 27 May 2015
Background

- Maintaining high level of adherence to antiretrovirals may be aided, in part, by introduction of fixed dose combination tablets
 - Tenofovir disoproxil fumarate (DF)/emtricitabine/efavirenz (Atripla®)
 - Tenofovir DF/emtricitabine/rilpivirine (Eviplera®, Complera®)
- Some patients may miss or delay doses due to specific circumstances e.g. busy lifestyle or personal issues
- Pharmacokinetic (PK) data describing prolonged time-course of antiretrovirals in plasma or peripheral blood mononuclear cells (PBMC) are lacking
- Important for understanding drug behaviour after treatment interruption and improving management of late and missed doses
- Assess appropriateness of compounds for pre-exposure prophylaxis (PrEP)
Background

Europe: No NNRTI, tenofovir or emtricitabine-associated resistance mutations
Viral load ≤100,000 copies/mL

US: Treatment-naïve patients with viral load ≤100,000 copies/mL
Switching virologically suppressed patients (<50 copies/mL)

1 Gilead Sciences Ltd. EVIPLERA® Summary of Product Characteristics 2014; 2 Gilead Sciences. COMPLERA® Prescribing Information 2014
Open-label, single-treatment arm, PK study at St Stephen’s Centre, Chelsea & Westminster Foundation Trust (London, UK)

Evaluate plasma PK of tenofovir (TFV), emtricitabine (FTC) and rilpivirine (RPV) and IC TFV-DP and FTC-TP PK in healthy, HIV negative volunteers over 9 days following drug intake cessation
Methods
Study Design & PK Sampling

Inclusion:
- HIV negative
- Healthy male & females
- 18-60 yr, BMI: 18-35 kg/m²
- Written informed consent

Exclusion:
- Significant illness e.g. HIV, HCV
- Abnormal laboratory parameters
- Medications 2 wks prior to study
- Use of hormonal birth control

SCREENING

- TDF/FTC/RPV
 - (300/200/25 mg once daily)

PK SAMPLING

- (0, 2, 4, 8, 12, 24, 36, 48, 60, 72, 96, 120, 144, 168, 192, 216h)

FOLLOW-UP

- Final Dose
 - Up to 9 days after drug cessation

DY-14

- Begin drug intake
 - (533kcal breakfast)

DY1

DY14

DY23

DY30-36

PLASMA

- TFV/FTC/RPV

PBMC³

- TFV-DP/FTV-TP

³ Jackson et al., JAIDS 2013; 62 (3): 275-81; ⁴ Else et al., Bioanalysis 2014; 6 (14): 1907-21
Explore the use of nonlinear mixed effects modelling to predict IC TFV-DP and FTC-TP concentrations from plasma data and prior information.
PK Modelling

Prediction of IC TFV-DP and FTC-TP

Time matched plasma and IC data from previous healthy volunteer study (TDF/FTC/EFV, 300/200/600 mg once daily)\(^3\) used as prior information to establish link between plasma TFV and FTC and IC anabolites.

Data up to 156 h (6.5 days; EFV study) and 168 h (7 days; RPV study) included.

EFV study\(^3\)

\[n = 16 \text{ (5 female)} \]

TFV SAMPLES (n/N)

- Plasma: 203/206
- IC: 183/207

FTC SAMPLES (n/N)

- Plasma: 206/206
- IC: 207/207

RPV study

\[n = 18 \text{ (11 female)} \]

TFV SAMPLES (n/N)

- Plasma: 245/251
- IC: 250/251

Structural Model

Covariate Model

- Weight, BMI, sex, age, CrCL

Final Model

Predictions

- TFV-DP/FTC-TP
- 0-168 h (7 days)

Simulations

- Visual Predictive Check

\(^3\) Jackson et al., JAIDS 2013; 62 (3): 275-81
Individual, model predicted TFV-DP and FTC-TP concentrations used to calculate parameters (WinNonlin Phoenix v. 6.3)

• Area under the curve 0-24 h (AUC\textsubscript{0-24})
• Area under the curve 0-168 h (AUC\textsubscript{0-168})
• Maximum concentration (C\textsubscript{max})
• Concentration 24 h post-dose (C\textsubscript{24})

Terminal elimination half-lives of TFV-DP and FTC-TP were calculated from the model derived parameter, k\textsubscript{40}
• Ln2/k\textsubscript{40}

Post-hoc Analysis: comparison with HIV prevention targets

90% risk reduction associated with

• TFV-DP: 16 fmol/106 viable PBMCs5
• FTC-TP: 3.7 pmol/106 viable PBMCs5
• Determine proportions below target values 24, 36, 48 and 72 h after stopping drug
• Representing a 12h delay in drug intake and 1-2 missed doses

5 Anderson et al., Sci Trans Med 2012; 4 (151): 151ra125
Results
Demographics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RPV study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female [n (%)]</td>
<td>Median (range) *</td>
</tr>
<tr>
<td>Age (years)</td>
<td>31 (19-47)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>75 (60-105)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24 (21-31)</td>
</tr>
<tr>
<td>Serum creatinine (µmol/L)</td>
<td>73 (57-104)</td>
</tr>
<tr>
<td>Creatinine clearance (CrCL; ml/min/1.73m²)†</td>
<td>103 (78-146)</td>
</tr>
<tr>
<td>Ethnicity [n (%)]</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>10 (55.6)</td>
</tr>
<tr>
<td>Black-Caribbean</td>
<td>2 (11.1)</td>
</tr>
<tr>
<td>Black-African</td>
<td>2 (11.1)</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 (5.6)</td>
</tr>
<tr>
<td>Mixed ethnicity</td>
<td>2 (11.1)</td>
</tr>
</tbody>
</table>

* Unless stated otherwise
† calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula

Study drug was well tolerated – no grade 3 or 4 adverse events were reported

3 Jackson et al., JAIDS 2013; 62 (3): 275-81; 6 Levey et al., Ann Inter Med 2009; 150 (9): 604-12
PK Model

FTC Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate (RSE%)</th>
<th>IIV (%) (RSE%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL/F (L/h)</td>
<td>19.6 (5.9)</td>
<td>19.1 (29.4)</td>
</tr>
<tr>
<td>Vc/F (L)</td>
<td>69.5 (11.0)</td>
<td>45.2 (65.7)</td>
</tr>
<tr>
<td>Q/F (L/h)</td>
<td>3.70 (9.1)</td>
<td></td>
</tr>
<tr>
<td>Vp/F (L)</td>
<td>128 (9.5)</td>
<td>18.8 (22.3)</td>
</tr>
<tr>
<td>ka (h⁻¹)</td>
<td>0.53 fix</td>
<td></td>
</tr>
<tr>
<td>k₂₄ (h⁻¹)</td>
<td>0.15 (21.8)</td>
<td>60.8 (22.9)</td>
</tr>
<tr>
<td>k₄₀ (h⁻¹)</td>
<td>0.019 (6.1)</td>
<td></td>
</tr>
</tbody>
</table>

Covariates

- θ_{CrCL} CL/F 0.0077 (30.9)

Residual error

- Proportional plasma (%) 36.1 (12.9)
- Proportional IC (%) 55.8 (13.3)

FTC Parameters

- 2 compartment, 1st order absorption; k_a fixed to 1.05 h⁻¹ (TFV)\(^7\), 0.53 h⁻¹ (FTC)\(^8\)
- Effect compartment linked to plasma described IC data
- Significant covariates:
 - **Weight** on FTC CL/F
 - **CrCL** on TFV CL/F
 - **Food** effect on F1 (relative increase in F1 of 33% for RPV study vs. EFV study)

\(^7\) Baheti et al., AAC 2011; 55 (11): 5294-9;
\(^8\) Valade et al., AAC 2014; 58 (4): 2256-61
PK Model

Visual Predictive Check

- Observed TFV; n=448
- Observed FTC; n=456
- Observed TFV-DP; n=183
- Observed FTC-TP; n=207

90% 92% 92% 94%
Predicted PK Profiles & Parameters

TFV-DP

- **n=18 volunteers; n=252 predicted TFV-DP concentrations**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric mean TFV-DP (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC<sub>0-24</sub> (fmol.h/10<sup>6</sup> cells)</td>
<td>1456 (1302-2193)</td>
</tr>
<tr>
<td>CV%</td>
<td>66</td>
</tr>
<tr>
<td>AUC<sub>0-168</sub> (fmol.h/10<sup>6</sup> cells)</td>
<td>7495 (6792-11486)</td>
</tr>
<tr>
<td>CV%</td>
<td>66</td>
</tr>
<tr>
<td>C<sub>max</sub> (fmol/10<sup>6</sup> cells)</td>
<td>92.2 (83.8-135)</td>
</tr>
<tr>
<td>CV%</td>
<td>60</td>
</tr>
<tr>
<td>C<sub>24</sub> (fmol/10<sup>6</sup> cells)</td>
<td>54.0 (48.2-87.9)</td>
</tr>
<tr>
<td>CV%</td>
<td>75</td>
</tr>
</tbody>
</table>

Predicted half-life = 116 h
Predicted PK Profiles & Parameters

FTC-TP

- Geometric mean

Predicted half-life = 37 h

$n=18$ volunteers; $n=252$ predicted FTC-TP concentrations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geometric mean FTC-TP (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{0-24} (pmol.h/10^6 cells)</td>
<td>87.8 (79.2-150)</td>
</tr>
<tr>
<td>CV%</td>
<td>80</td>
</tr>
<tr>
<td>AUC_{0-168} (pmol.h/10^6 cells)</td>
<td>273 (252-440)</td>
</tr>
<tr>
<td>CV%</td>
<td>70</td>
</tr>
<tr>
<td>C_{max} (pmol/10^6 cells)</td>
<td>6.15 (5.73-10.5)</td>
</tr>
<tr>
<td>CV%</td>
<td>75</td>
</tr>
<tr>
<td>C_{24} (pmol/10^6 cells)</td>
<td>3.07 (2.88-5.63)</td>
</tr>
<tr>
<td>CV%</td>
<td>83</td>
</tr>
</tbody>
</table>
Comparison with HIV Prevention Targets

- Predicted concentrations at 24, 36, 48 and 72 h after stopping drug compared to HIV prevention targets (derived from iPrEx study data; TFV-DP: $16 \text{ fmol} / 10^6 \text{ cells}$, FTC-TP: $3.7 \text{ pmol} / 10^6 \text{ cells}$)5

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>TFV-DP</th>
<th>FTC-TP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>%</td>
</tr>
<tr>
<td>24</td>
<td>1/18</td>
<td>6</td>
</tr>
<tr>
<td>36</td>
<td>0/18</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>1/18</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>4/18</td>
<td>22</td>
</tr>
</tbody>
</table>

- Majority of predicted TFV-DP concentrations \textbf{above} its threshold up to 3 days after final dose

- Most of predicted FTC-TP \textbf{below} its target between 24-72 h after stopping drug

5 Anderson \textit{et al.}, \textit{Sci Trans Med} 2012; 4 (151): 151ra125
Conclusions

• Prediction of TFV-DP and FTC-TP from plasma data was achieved through inclusion of prior information from a previous healthy volunteer study.

• The models, although relatively simplistic, described the data well, but also allows for refinement if further data become available.

• TFV plasma concentrations were higher in the RPV study (SSAT048) compared to the EFV study.

• Predicted TDF-DP and FTC-TP concentrations were generally in agreement with literature values\(^5,9-10\)

Limitations

Assumptions:

- RPV and EFV have no or impact on TFV-DP and FTC-TP disposition
- Increased relative bioavailability assumed to be due to food intake but could be a result of inhibition of renal transporters by RPV or a combination of both

Limitations:

- An independent, external validation dataset required to evaluate the model, particularly to confirm TFV-DP and FTC-TP predictions
- IC rate constants (k_{24}, k_{40}) rely solely on prior data and are a simplification of the ongoing processes they describe
Acknowledgements

Special thanks to the research staff of St. Stephen’s Centre and the volunteers for taking part

The clinical study was performed with financial support from Gilead Sciences Ltd.

LD has received a travel bursary from Gilead Sciences Ltd.