Detection of the NS3 Q80K polymorphism by Sanger and deep sequencing in hepatitis C virus (HCV) subtype 1a strains in the United Kingdom

Apostolos Beloukas, Simon King, Kate Childs, Athanassios Papadimitropoulos, Mark Hopkins, Mark Atkins, Kosh Agarwal, Mark Nelson, Anna Maria Geretti

Institute of Infection and Global Health (IGH), University of Liverpool (UoL)
HCV heterogeneity

- HCV is genetically heterogeneous and classified into 7 genotypes and several subtypes (1a-m, 2a-r, 3a-l, 4a-t, 5a, 6a-u, 7a)

- HCV strains belonging to different genotypes differ at 30-35% of nucleotide sites, whereas strains that belong to the same subtype differ at <15% of nucleotide sites

- Different HCV genotypes and subtypes show distinct geographical distribution and association with risk categories in the population

Global geographic distribution of HCV genotypes

The NS3 Q80K polymorphism

- HCV NS3 protease enzyme exhibits a high degree of genetic variability
- Only 47% of its amino acids are conserved among circulating HCV
- Natural resistance to NS3 inhibitors is rare (<8%) among DAA naive patients infected with HCV-1
- Q to K substitution at codon 80 (Q80K) occurs as a polymorphism in the NS3 gene of HCV-1a strains
- The Q80K polymorphism reduces susceptibility to simeprevir plus pegylated interferon alpha and ribavirin (P/R)
- Screening for Q80K is therefore recommended before starting simeprevir

Aims

① Determine the prevalence of Q80K in NS3 sequences obtained from HCV-1a infected patients attending for care in two regions of the United Kingdom (UK)

② Investigate the occurrence of Q80K as a low frequency variant by next generation sequencing

③ Investigate the phylogenies of NS3 sequences from the UK in relation to publically available sequences from the rest of Europe and North America
Methods

Study population

238 adults (median age 44 years) HCV-1a infected

70/238 (29.4%) in the North-West (NW)

168/238 (70.6%) in the South-East (SE)

HCV RNA load median 6.3 log10 IU/ml (IQR 5.8-6.8)

All naïve to any anti-HCV therapy

All coinfected from SE
Methods

Deep sequencing
- aa180 of NS2 to aa204 of NS3
- Nextera XT
- Illumina MiSeq using v2 reagents
- Cutadapt v1.2.1
- Sickle v1.2
- BAMStats
- VirVarSeq pipeline v17
- 727bp HCV-1a molecular clone
- Error rate at the codon level mean 0.6\% (SD 0.2\%)

Population sequencing
- aa180 of NS2 to aa204 of NS3
- BigDye Terminator CS Kit
- ABI Prism 3730 Genetic Analyser
- SeqScape (v2.7)
- Geno2pheno
The Q80K prevalence

Overall 80K prevalence 44/238, 18.49% (CI 13.49%-23.43%)

- 28/178 (16.2%) of the samples tested by both population and NGS (≥1%)
- 16/60 (26.7%) tested only by population sequencing

- 28 samples identified 80K using both had by NGS mutant frequencies >40%

- 2 samples showing mixed 80Q/K by Sanger: one had a Q:K ratio of 54:46, and the other showed Q,K and L at a ratio of 57:41:2 by NGS

- Q80K increased 2% (1 more sample) for 80K with an interpretative cut-off between ≥0.5% and <1%, and 10% (3 more samples) with ≥0.2% and <0.5%

- BUT... estimated error rate (0.6%, SD 0.2%)
Q80K prevalence in European countries

Q80K prevalence (%)
- 0
- <5.0
- 5.1–10.0
- 10.1–15.0
- 15.1–20.0
- <20 HCV genotype 1a and <40 HCV genotype 1 patients with data
- No data

Leggewie M et al, AIDS 2013; Sarrazin et al, Antiviral Research 2014
The 80K prevalence by region / risk group

% detection rates

North-West region (Liverpool)
- 19/70
- 27.14%

South-East region (London)
- 25/168
- 14.88%

HIV/HCV co infected
- 18/107
- 16.82%

HCV mono infected
- 7/61
- 11.48%

*p=0.04 *

p=0.38
Other Q80 codon substitutions

- One sample showing 80L by Sanger had codon frequencies 88.2% L/11.5% Q
- Three more samples showing 80L by NGS with interpretative cut-off >1% (mutant freq 1.38%-5.59%)
- Three samples showing 80R by NGS (mutant freq 1.06% - 1.73%)

- Clinical significance ???
Other NS3 mutations

![Graph showing the distribution of NS3 mutations detected by Sanger sequencing and NGS with different coverage thresholds.](image-url)
Phylogenetic analysis

Methods

- HCV-1a NS3 sequences from North America and Europe
- 882 sequences from the Los Alamos HCV sequence database
- Maximum-likelihood (ML) phylogenies (with and without the Q80K codon)
- FastTree v.2.1.7 - local branch support by the Shimodaira–Hasegawa-like (SH-like) test
- Clusters (≥3 seqs) were identified by a bootstrap support >75%
Sampling NS3 sequences
UK sampling NS3 sequences
HCV-1a NS3 global phylogeny

Clade II / 80Q

Clade I / 80K
HCV-1a NS3 global phylogeny

Pickett et al, JVH 2011; McCloskey et al, JID 2014 (advance access view)
HCV-1a NS3 clades dating

Clade I
- 1966
 - (1952–1972)

- 1964
 - (1941–1976)

Clade II
- 1975
 - (1961–1989)

DeLuka et al, OFID 2015 (advance access view)
HCV-1a NS3 sequences 80K <1%

Clade II / Q80

Clade I / 80K
UK NS3-1a transmission clusters

Clusters (≥3 seqs) were identified by a bootstrap support >75%

- 4 NW, 8 SE, and 11 inter-regional clusters
- 3-20 sequences
- 148/238 (62.2%) of UK sequences (49/70, 70.0% in the NW and 99/168, 58.9% in the SE)
Conclusions

① Q80K at high prevalence among treatment-naïve HCV-1a carriers attending for care in UK

② The Q80K prevalence varied by geographical region, being higher in Northwest region in UK

③ Regional transmission networks may lead to these differences

④ No samples showing Q80K at a frequency below the detection threshold of Sanger sequencing (≥20%) and above the typical ≥1% interpretative cut-off for NGS
Acknowledgments

Co-authors
• Simon King
• Kate Childs
• Athanassios Papadimitropoulos
• Mark Hopkins
• Mark Atkins
• Kosh Agarwal
• Mark Nelson
• Prof. Anna Maria Geretti

Collaborative centres/clinical cites
• Institute of Infection and Global Health (IGH), University of Liverpool
• Centre for Genomic Research (CGR), University of Liverpool
• Liverpool Specialist Virology Centre, Royal Liverpool and Broadgreen University Hospitals NHS Trust
• Institute of Liver Studies, Department of HIV Medicine and Sexual Health, King's College Hospital
• Department of Clinical Virology, Frimley Park Hospital NHS Foundation Trust
• Institute of Liver Studies, Department of Liver Diseases, King's College Hospital
• Department of HIV medicine and Sexual Health, Chelsea and Westminster NHS Foundation Trust