Improvement of HIV-1 resistance testing by proviral DNA analysis and Next Generation Sequencing

Nadine Lübke
Institute of Virology
Cologne
Problems

- Majority of samples from therapy-experienced patients with VL < 500 copies/ml
 - Low level (LLV) or undetectable viremia
 - In most cases no results with plasma samples
- Restricted detection limit of drug resistance mutations (DRMs)
 - Sanger sequencing: 15-20% sensitivity cutoff
Possible Solutions

- proviral DNA (PBMCs)
 - Unsuccessful testing with plasma RNA
 - LLV or suppressed VL
 - Problem
 - VL often not known at timepoint of sample processing
 - Cost and time intensive unnecessary repeats with plasma samples

- Total nucleic acid (tNA= plasma RNA + proviral DNA)
 - Effective resistance testing with unknown VL
 - Saving cost and time
Comparison of mutation patterns

1. **Viral RNA vs. proviral DNA** of identical blood samples

2. **Viral RNA vs. total NA** of identical blood samples
 - Sanger sequencing vs. NGS
69 samples of TE (n=46) and TN patients (n=23) of the RESINA cohort

- Paired viral RNA and proviral DNA were isolated
- PR and RT genes were amplified
- Sanger sequencing
- 47/69 samples (68%) presented DRMs in RNA and/or proviral DNA genotypes
High concordance of the DRMs in viral RNA and proviral DNA (41.6%), especially the PI mutations (53.2%)

Significant higher frequency of RTI mutations in RNA only (40.5%) compared to PI mutations (23.4%) (p=0.049)
36 different resistance-associated positions in PR and RT

6/36 DRMs were more frequent in proviral DNA (NNRTI and PI mutations)

8/36 DRMs were more frequent in viral RNA (NRTI mutations)

Overall high concordance of DRMs in RNA and DNA
28 samples of TN patients of the RESINA cohort

- median VL=54,433 copies/ml (range 281-10,000,000)
- Plasma viral RNA and total NA were isolated of each sample
- PR und RT genes were amplified

Sequencing

- Sanger Sequencing (Sanger)
- Next Generation Sequencing (NGS)
 - Illumina MiSeq (selected sensitivity cutoff 10%)
Prevalence of DRMs in viral RNA and tNA

<table>
<thead>
<tr>
<th></th>
<th>viral RNA</th>
<th>total NA</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanger (n=27)</td>
<td>DRM</td>
<td>32</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>1.19 ± 0.96</td>
<td>1.56 ± 0.70</td>
</tr>
<tr>
<td>NGS (n=28)</td>
<td>DRM</td>
<td>73</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2.61 ± 1.50</td>
<td>3.07 ± 1.68</td>
</tr>
<tr>
<td>P-value</td>
<td></td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

- 1.3-fold higher detection rate of DRMs in tNA samples
- 2-fold higher detection rate of DRMs by NGS (p=0.0001)

- tNA analyses provided a slightly increased DRM detection rate
- Significant higher DRM detection rate by NGS
DRM detected in RNA only, tNA only or both

Sanger:
- 6-fold higher detection rate of DRMs in tNA vs. RNA only
- High concordance of DRMs in RNA and tNA (68%)

NGS:
- 1.5-fold higher detection rate of DRMs in tNA vs. RNA only
- Increased sensitivity of DRM detection independent of used nucleic acids
Sanger:
- 95% of DRMs are detected by tNA

NGS:
- 74% of DRMs are detected by tNA
- twice as many as detected by Sanger
- superior to Sanger
Summary and Conclusion

- **RNA vs. DNA**
 High concordance of DRMs in viral RNA and proviral DNA
 - Proviral DNA resistance testing could help in cases of unsuccessful RNA genotyping (LLV, suppressed VL)

- **RNA vs. tNA**
 Total NA provided an increased DRM detection rate
 - Total NA could be an alternative to plasma RNA analyses

- **Sanger vs. NGS**
 NGS significantly increased the resistance information
 - NGS could be an alternative in routine diagnostic
Thanks to...

Institute of Virology, University of Cologne

Rolf Kaiser
Sarah Reinartz
Elena Knops
Veronica Di Cristanziano
Maria Neumann-Fraune
Eugen Schülter
Claudia Müller
Dörte Hammerschmidt
Ramona Gilles
Saleta Sierra-Aragon
Eva Heger

RESINA Co-operation partner

Thomas Lengauer, MPI of Informatics, Saarbrücken
Martin Däumer, Alex Thielen, Institut für Immungenetik, Kaiserslautern
Jens Verheyen, Virologie Essen
Björn Jensen, Dept. Gastroenterology, Hepatology & Infectiology, University of Düsseldorf
Gerd Fäktenheuer, Dept. Internal Medicine I, University of Cologne
Stefan Esser, Dept. of Dermatology, University of Essen
Jürgen Rockstroh, Dept. Internal Medicine I, University of Bonn
Mark Oette, Dept. Gastroenterologie, Krankenhaus der Augustinerinnen, Cologne
Stefan Scholten, Privat Practice, Köln
Patrick Braun, Heribert Knechten, PZB Aachen

RESINA Funding

BMG: IIA5-2013-2514AUUK375