Transmission of Pre-adapted Viruses Determines the Rate of CD4+ Decline in Seroconvertors from Zambia

9th International Workshop on HIV Transmission – Principles of Intervention
Cape Town, 25-26 October 2014

Daniela C. Mónaco, Ph.D.
Emory Vaccine Center, Atlanta, GA, U.S.A.
Transmission of escape mutations to the cytotoxic immune response
Factors that impact early pathogenesis

- Set-point VL is influenced by a complex interplay of viral and host factors. VL in the donor, gender of the recipient, protective alleles present in the recipient (A*74, B*13 and B*57) and allele B sharing between the donor and the recipient contribute to the set-point VL (Yue et al. J. Virol. 2013, 87(2):708)

- CTL escape mutations present in Gag, but not in Nef, in the donor transmitting sequence correlates with a reduced early VL in the recipient (Goepfert et al. J Exp Med. 2008 May 12;205(5):1009-17)

- Replicative Capacity of the transmitted variant measured on the Gag gene had an independent effect from set-point VL on the rate of CD4+ decline up to 3 years (Prince et al. PLoS Pathog. 2012;8(11):e1003041)

- B*81:01 was associated with higher CD4+ counts in early and chronic infection, even when it showed no effect on set-point VL (Prentice et al. J Virol. 2013 Apr;87(7):4043-51)
Objective of the Study

To evaluate the role of transmitted pre-adapted polymorphisms in determining the rate of CD4$^+$ decline in the newly-infected individual
Zambia-Emory HIV Research Project (ZHERP), established by Dr. Susan Allen in 1994
Identified 148 epidemiologically-linked couples (median EDI=45.5 days; min=14 days; max=92 days)

Baseline

Couple is identified as serodiscordant
HIV negative partner is tested once per month
HIV negative partner seroconverts
Plasma collected from D and LR
gag, pol and nef amplified by population PCR and sequenced from D and LR

8 years

Periodical VL and CD4+ count determinations
Methodology

D polymorphisms
(any position different from the consensus)

LR transmitted polymorphisms
(any position different from the consensus and present in the D sequence)

Adaptation
(to the HLA alleles of the D)

Pre-adaptation
(to the HLA alleles of the LR)

- HLA-linked: any polymorphism located on a position statistically-linked to a certain HLA allele present in the individual (using a cut-off of $q<0.2$ or $q<0.01$)
- Epitope-located: any polymorphism located in a well-defined epitope (A-list epitopes from http://www.hiv.lanl.gov/) restricted by the HLA alleles present in the individual
- HLA-associated: HLA-linked + Epitope-located
1. What is the level of adaptation of the viral population in the chronically-infected individuals?

HLA-associated \((q<0.2)\)

A. Polymorphisms attributed to Donor’s HLA

B. Polymorphisms attributed to any HLA

A small fraction of polymorphisms in a chronically-infected individual is associated with immune selection in the same individual. Most of these polymorphisms can be associated with other HLA alleles.
2. What is the level of pre-adaptation of the transmitted variant in the newly-infected individual?

Most donor polymorphisms are transmitted to the newly-infected individual (approximately 80%) and a 20% of them are already adapted to the HLA alleles of the recipient.
3. What is the role of transmitted pre-adapted polymorphisms in determining the rate of CD4⁺ decline in the newly-infected individual?

Ratio of Pre-adapted/Non-adapted Polymorphisms in Gag:
- HLA-linked polymorphisms (q<0.01)
3. What is the role of transmitted pre-adapted polymorphisms in determining the rate of CD4\(^+\) decline in the newly-infected individual?

<table>
<thead>
<tr>
<th>Risk of CD4+ Count <350 cells/µl</th>
<th>Feature</th>
<th>HR</th>
<th>Lower</th>
<th>Upper</th>
<th>Wald Chi-Square</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B*14:01</td>
<td>0.274</td>
<td>0.065</td>
<td>1.157</td>
<td>3.103</td>
<td>0.0782</td>
</tr>
<tr>
<td></td>
<td>HLA-B Sharing</td>
<td>11.306</td>
<td>2.014</td>
<td>63.478</td>
<td>7.591</td>
<td>0.0059</td>
</tr>
<tr>
<td></td>
<td>Replicative Capacity</td>
<td>1.813</td>
<td>1.104</td>
<td>2.978</td>
<td>5.530</td>
<td>0.0187</td>
</tr>
<tr>
<td></td>
<td>Set-point VL</td>
<td>1.000</td>
<td>0.685</td>
<td>1.459</td>
<td>0.000</td>
<td>0.9989</td>
</tr>
<tr>
<td></td>
<td>B Sharing-RC Interaction</td>
<td>0.320</td>
<td>0.130</td>
<td>0.787</td>
<td>6.160</td>
<td>0.0131</td>
</tr>
<tr>
<td></td>
<td>Gag Adapted/Non Adapted Polymorphisms</td>
<td>1.065</td>
<td>1.015</td>
<td>1.119</td>
<td>6.491</td>
<td>0.0108</td>
</tr>
</tbody>
</table>

The ratio of pre-adapted/non-adapted transmitted polymorphisms in Gag has an independent effect on determining the rate of CD4\(^+\) decline to 350 cells/µl.
3. What is the role of transmitted pre-adapted polymorphisms in determining the rate of CD4+ decline in the newly-infected individual?

Individuals receiving the highest ratios of Pre-adapted/Non-adapted Polymorphisms in Gag have the highest rate of CD4+ decline.
A high ratio of pre-adapted to non-adapted transmitted polymorphisms in Gag is the single predictor for a fast CD4+ decline to an early stage (350 cells/μl) but set-point VL and RC also play a role in determining the rate of CD4+ decline to a disease stage (200 cells/μl).

Risk of CD4+ Count <350 cells/μl

<table>
<thead>
<tr>
<th>Feature</th>
<th>HR</th>
<th>Lower</th>
<th>Upper</th>
<th>Wald Chi-Square</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B*14:01</td>
<td>0.294</td>
<td>0.069</td>
<td>1.247</td>
<td>2.758</td>
<td>0.0968</td>
</tr>
<tr>
<td>HLA-B Sharing</td>
<td>1.393</td>
<td>0.712</td>
<td>2.724</td>
<td>0.937</td>
<td>0.3330</td>
</tr>
<tr>
<td>Replicative Capacity (Lowest Tercile)</td>
<td>0.598</td>
<td>0.312</td>
<td>1.144</td>
<td>2.414</td>
<td>0.1203</td>
</tr>
<tr>
<td>Set-point VL (>5)</td>
<td>1.319</td>
<td>0.575</td>
<td>3.026</td>
<td>0.428</td>
<td>0.5130</td>
</tr>
<tr>
<td>Gag Adapted/Non Adapted Polymorphisms (>Percentile85)</td>
<td>4.404</td>
<td>1.878</td>
<td>10.325</td>
<td>11.627</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Risk of CD4+ Count <200 cells/μl

<table>
<thead>
<tr>
<th>Feature</th>
<th>HR</th>
<th>Lower</th>
<th>Upper</th>
<th>Wald Chi-Square</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B*14:01</td>
<td>0.288</td>
<td>0.038</td>
<td>2.183</td>
<td>1.452</td>
<td>0.2283</td>
</tr>
<tr>
<td>HLA-B Sharing</td>
<td>0.500</td>
<td>0.220</td>
<td>1.134</td>
<td>2.752</td>
<td>0.0971</td>
</tr>
<tr>
<td>Replicative Capacity (Lowest Tercile)</td>
<td>0.773</td>
<td>0.336</td>
<td>1.782</td>
<td>0.365</td>
<td>0.5459</td>
</tr>
<tr>
<td>Set-point VL (>5)</td>
<td>4.809</td>
<td>1.959</td>
<td>11.803</td>
<td>11.750</td>
<td>0.0006</td>
</tr>
<tr>
<td>Gag85-RCLowestTercile Interaction</td>
<td>15.858</td>
<td>1.289</td>
<td>195.155</td>
<td>4.657</td>
<td>0.0309</td>
</tr>
<tr>
<td>Gag Adapted/Non Adapted Polymorphisms (>Percentile85)</td>
<td>3.712</td>
<td>1.437</td>
<td>9.587</td>
<td>7.341</td>
<td>0.0067</td>
</tr>
</tbody>
</table>
In the chronic Zambian HIV+ population, we found that only a small proportion of polymorphisms in Gag, Pol and Nef proteins can be associated with the individual’s own HLA-I alleles. This could be explained by the polymorphism’s:

(1) high rate of transmission, even when a bias for transmission of consensus residues is observed (Carlson et al., Science. 2014 Jul 11;345(6193):1254031);

(2) low rate of reversion, approximately 10% in the first 2 years after transmission, even in the absence of the selecting HLA in the newly-infected individual (data not shown).

These observations would also explain the high numbers of pre-adapted HLA-linked polymorphisms transmitted to the newly-infected individual.
In the newly-infected individual, transmission of pre-adapted polymorphisms is associated with an accelerated CD4+ decline, independently of other factors such as protective alleles, allele sharing, replicative capacity or set-point VL.

In contrast these pre-adapted polymorphisms didn’t have any significant effect on early set-point VL (data not shown).

This results show that, even when selection of polymorphisms is usually associated with a less pathogenic virus due to the impact of these polymorphisms in replicative capacity, the release from immune pressure driven by these polymorphisms may be of greater advantage for the virus.
Acknowledgments

Emory University
Eric Hunter
Dario A. Dilernia
Jessica Prince
Daniel Claiborne
Kristine Dennis
Malinda Schaefer
Ling Yue
Paul Farmer

IAVI-RZHRG
Susan Allen
Shabir Lakhi
William Kilembe
Mubiana Inambao
Etienne Karita
Staff & study participants

University of Alabama at Birmingham
Paul Goepfert
James Tang

International AIDS Vaccine Initiative
Jill Gilmour
Gladys Macharia
Matt Price

Microsoft Research
David Heckerman
Jonathan Carlson

This work was supported by grants from the National Institutes of Health (R01AI-64060, R37 AI-51231 (E.H.)) and IAVI (S.A.)