THE INHIBITORY POTENTIAL OF TB DRUGS ON ATP-BINDING CASSETTE TRANSPORTERS MRP1-5, P-GP, BCRP AND BSEP

Lindsey H.M. te Brake, Jeroen J.M.W van den Heuvel, David M. Burger, Jurriaan E. de Steenwinkel, Gerjo J. de Knegt, Reinout van Crevel, Frans G. Russel, Rob E. Aarnoutse, Jan B. Koenderink
ABC transporters

- ABC transporters actively transport substrates across the cell membrane with the use of ATP hydrolysis
- Located at pharmacological barriers and important in ADME of drugs
- Transporter interactions have a major impact on later phases of drug development
- *In vitro* high-throughput: “fail fast - fail cheap”
Aim

To study the inhibitory potential of a range of anti-TB drugs on the ABC transporters MRP1-5, BCRP, P-gp and BSEP in vitro, to obtain insight in the role of efflux transporters in drug-drug interactions.
Vesicle assay

✓ Vesicles: cell membrane preparations containing transporter(s)

✓ Functional expression in vesicles:

human ABCB1: MDR1 / Pgp
human ABCB11: BSEP
human ABCC1: MRP1
human ABCC2: MRP2
human ABCC3: MRP3
human ABCC4: MRP4
human ABCC5 MRP5
human ABCG2: BCRP
Transporters in different organs

KIDNEY

- OAT1
- OAT2
- OAT3
- OCT2
- SLCO4C1
- MRP2
- MRP4
- P-gp *
- BCRP *
- MATE1
- MATE2k
- URAT1 *
- PEPT1
- PEPT2

LIVER

- MRP1
- MRP3
- MRP4
- MRP5
- MRP6
- OAT1A2
- OATP1B1
- OATP1B3
- OATP2B1
- NTCP
- OAT1
- OCT1
- OCT3

BLOOD-BRAIN-BARRIER

- BCRP *
- P-gp *
- MRP2
- MRP4
- MRP5
- MRP1
- MRP3
- MRP4
- MRP5
- MRP6
- BSEP
- MDR3
- MATE1
- ABCG5
- ABCG8

INTESTINE

- MRP1
- MRP3
- MRP2
- BCRP *
- P-gp *
- OCT1
- OATP2B1

Legend:

- Green: ATP mediated transporter functional in vesicles
- Red: ATP mediated transporter non-functional
- Yellow: Non ATP mediated transporter functional in cell line
- Purple: Non ATP mediated transporter non-functional

Also functional in vesicles
* Also functional in cell line
I. First line oral agents
- Rifampicin
- Isoniazid
- Pyrazinamide
- Ethambutol
- Linezolid

II. Injectable agents
- Amikacin

III. Fluoroquinolones
- Moxifloxacin

IV. Oral bacteriostatic second line agents
- Cycloserine
- Ethionamide
- PAS

V. Agents with unclear role
- Amoxicillin
- Clofazimine
- Linezolid

Agents experimental in TB treatment (EPI)
- Thioridazine
- Timcodar
- SQ109
Vesicle assay (II)

Assay ingredients:

✓ Vesicles
✓ Model substrate (RA label)
✓ Potential drug inhibitors (200 µM)
✓ ATP
Inhibitory effects TB-drugs – high-throughput

200 µM solutions -> derive concentration-effect curves
Inhibitory effects TB-drugs – high-throughput

RIF, CLF and EPIs are most important significant inhibitors
IC50 – heat map

<table>
<thead>
<tr>
<th></th>
<th>Pgp</th>
<th>BCRP</th>
<th>BSEP</th>
<th>MRP1</th>
<th>MRP2</th>
<th>MRP3</th>
<th>MRP4</th>
<th>MRP5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>EMB</td>
<td>INH</td>
<td>PZA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>AMK</td>
<td>MXF</td>
<td>CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>AMX</td>
<td>CLF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>SQ109</td>
<td>TRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPI</td>
<td>TIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radboudumc
IC50 – P-gp

- 1 µM = 0.7 mg/L
- 2 µM = 0.8 mg/L
- 11 µM = 3.5 mg/L
- 23 µM = 9.2 mg/L
- 29 µM = 24 mg/L

- Curve shift right -> higher IC50
- Free concentrations: possible relevant/irrelevant
Conclusion

1. Supposedly mycobacterial EPIs (timcodar, SQ109 and thioridazine) inhibit a range of human ABC transporters at possibly clinical relevant concentrations.

2. Clofazimine shows potent *in vitro* transporter inhibition. In clinical setting DDI are relatively unknown.

3. Rifampicin shows inhibition at probably clinical irrelevant free concentrations.
Conclusion (II)

✓ Vesicle assay can be used to screen for transport inhibition in an early stage of drug development, to predict DDI expectancy:

1. IC50 values represent free concentrations at target site
 -> no *in vivo* protein binding and drug accumulation

2. No effect on expression levels
 -> rifampicin induces expression *in vivo*

3. Mechanism of inhibition unknown (competitive vs direct inhibition)
Acknowledgements

RIMLS - Pharmacology/Toxicology
- Jeroen van den Heuvel
- Frans Russel
- Jan Koenderink

Pharmacy
- Rob Aarnoutse
- David Burger

Internal Medicine
- Reinout van Crevel

Medical Microbiology
- Gerjo de Knecht
- Jurriaan de Steenwinkel