Real-time and non-invasive, multi-compartment pharmacokinetics of 11C-Rifampin in *Mycobacterium tuberculosis*-infected mice using dynamic PET

V. Peter DeMarco
Why Rifampin?

- First-line treatment essential for shortening therapy against *M. tuberculosis*
- Dosing based on serum / plasma concentrations (confirmed by post mortem resection)
- Drug concentration within necrotic pulmonary lesions (post-mortem) lower than blood concentrations*

Radiosynthesis and Bioimaging of Rifampin

• Labeled first-line TB drugs with 11C
• Injected into healthy baboons

Liu et al. J Med Chem. 2010
Advantages of PET

• In the past only invasive, post-mortem techniques have been available

• PET imaging is noninvasive and does not require tissue resection
 • Radiolabeling allows for multi-compartment viewing of drug distribution

• Easily translatable to larger animals and humans for further study
C3HeB/FeJ Mouse Model

- C3HeB/FeJ mouse model develops granulomatous lung lesions with *M. tuberculosis* aerosol infection akin to human disease
 - Pulmonary lesions with caseous, necrotic centers and fibrotic edges with occasional cavitation

Pan *et al.* Nature 2005
Davis *et al.* PLoS ONE 2009
Davis *et al.* Antimicrob Agents Chemother. 2009
Granulomas

Collagen fibers (blue)

Reticulin fibers (red)
Methods

C3HeB/FeJ mice aerosol infected with *M. tuberculosis* (H37Rv)

11C-Rifampin synthesized on site

Biocontainment system to image multiple animals simultaneously

PET and CT scans co-registered using AMIDE (version 1.0.4)

Mice IV injected with radioprobe as dynamic PET scan began

Regions of interest (ROIs) drawn in multiple compartments to quantify drug distribution

Non-compartmental analysis using WinNonlin (version 2.1) for AUC and Cmax

Lung samples sent for matrix-assisted laser desorption ionization (MALDI) imaging

3D Representation of PET/CT depicting rapid localization to liver and metabolism

11C-Rifampin PET/CT of *M. tuberculosis*-infected mouse post IV injection
Similar concentrations of 11C-Rifampin in blood of infected and uninfected animals

Data represents Mean ± Standard Deviation (n=5)
PET accurately predicts 11C-Rifampin concentrations in brain compared to blood

Levels in brain are $14.55 \pm 1.67\%$ of blood concentrations

Data represents Mean ± Standard Deviation (n=5)

11C-Rifampin accumulates rapidly in liver with no significant differences

Data represents Mean ± Standard Deviation (n=5)
Lower 11C-Rifampin concentrations in infected lung tissues

Data represents Mean ± Standard Deviation (n=5)
Lower 11C-Rifampin concentrations in infected lung tissues

- Transverse lung field PET/CT of an *M. tuberculosis* infected mouse
- Granulomatous tissue depicted by yellow circle
- Purple represents concentration of rifampin (highlighted by orange arrow)
Pharmacokinetic analysis of 11C-Rifampin

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Infected (n=5)</th>
<th>Uninfected (n=5)</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>30.54 ± 1.90</td>
<td>34.18 ± 2.50</td>
<td>0.07</td>
</tr>
<tr>
<td>Injected dose (ng)</td>
<td>0.07 ± 0.02</td>
<td>0.07 ± 0.02</td>
<td>0.80</td>
</tr>
<tr>
<td>Injected dose (MBq)</td>
<td>8.61 ± 2.09</td>
<td>8.26 ± 2.51</td>
<td>0.80</td>
</tr>
<tr>
<td>Blood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>0.0622 ± 0.029</td>
<td>0.0591 ± 0.045</td>
<td>0.89</td>
</tr>
<tr>
<td>AUC$_{0-90}$ (ng*h/ml)</td>
<td>0.0080 ± 0.002</td>
<td>0.0082 ± 0.003</td>
<td>0.90</td>
</tr>
<tr>
<td>Brain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>0.0086 ± 0.009</td>
<td>0.0050 ± 0.002</td>
<td>0.39</td>
</tr>
<tr>
<td>AUC$_{0-90}$ (ng*h/ml)</td>
<td>0.0017 ± 0.002</td>
<td>0.0011 ± 0.001</td>
<td>0.49</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>0.0624 ± 0.017</td>
<td>0.0676 ± 0.016</td>
<td>0.63</td>
</tr>
<tr>
<td>AUC$_{0-90}$ (ng*h/ml)</td>
<td>0.0825 ± 0.025</td>
<td>0.0908 ± 0.022</td>
<td>0.59</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>0.0221 ± 0.010</td>
<td>0.0326 ± 0.020</td>
<td>0.33</td>
</tr>
<tr>
<td>AUC$_{0-90}$ (ng*h/ml)</td>
<td>0.0050 ± 0.001</td>
<td>0.0077 ± 0.002</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Data represents Mean ± Standard Deviation; * two-tailed Student’s t test
Concentration of Rifampin in mouse granulomas

MALDI imaging after IV dose of Rifampin
(10mg/kg body weight)

In collaboration with Dr. Prideaux and Dr. Dartois (PHRI)
Study Limitations

• PET scanner resolution (1mm)
• Cannot differentiate parent compound from metabolites
• Radioactive half-life of 11C radiolabel shorter than biological half-life of rifampin
Conclusions and Future Directions

1. Successful model for imaging 11C-Rifampin distribution *in vivo* in infected animals
 - Allows for simultaneous multi-compartment measurements compared to post-mortem tissue sampling

2. Lower concentrations of rifampin were noted in necrotic areas of granulomas relative to healthy lung tissue

3. Future Directions:
 - Imaging in our other animal models (rabbits, non-human primates) and humans
 - Studying biodistribution of novel TB drugs
Jain Lab
Sanjay Jain
Alvaro Ordoñez
Mariah Klunk
Edward Weinstein
Supriya Pokkali
Allison Murawski

JHU PET Center
Daniel Holt

JHU Pharmacology
Kelly Dooley
Carlton Lee

PHRI
Veronique Dartois
Brendan Prideaux

Stonybrook University
Peter Tonge
Hui wang
Zhuo Zhang

Funding
ACTG Novel Formulations supplement (DAIDS)
NIH Director’s New Innovator Award