Effect of calcium and cholecalciferol supplement on bone mass accrual among perinatally HIV-infected adolescents with osteopenia

HIVNAT, Thai Red Cross AIDS Research Center, Dept. of Pediatric, Fac. of Medicine, Chulalongkorn U, Dept. of Pediatric, Fac. of Medicine Siriraj Hospital, Mahidol U, Thailand
Background

• Prevalence of low bone mineral density (BMD) among HIV-infected adolescents\(^1\): range 4-32%

• **Factors associated with low BMD**

 – Nutrition factors\(^2\)

 • Only 17% had calcium intake > 1000 mg/day
 • Only 25% had 25-OH vitamin D > 30 ng/ml

 – HIV infection esp. advanced stage

 – Antiretroviral drugs e.g. TDF, PIs

\(^1\)Puthanakit T, Siberry GK 2013, JIAS;16:18575
Bone mineral density in adolescents

- **BMD** = Bone mineral content (g/cm²) per area
- **BMD** is increased by age
- **BMD z-score** is a comparison with age, gender, ethnicity

N=174
N=193
Study Objective

To describe changes in bone mineral density (BMD) among perinatally HIV-infected adolescents with osteopenia (< -2 Z-score) before and after calcium + cholecalciferol supplement

Dual-energy X-ray absorptiometry (DXA)
At Lumber spine (L2-L4)
Study design

Population*: Perinatally HIV-infected aged 12-20 yrs
L2-L4 BMD < -2 Z-score

Intervention: 1.2 g of calcium + Vit D3 400 IU/d * 6 mos

1st BMD

2nd BMD 3rd BMD

Dietary & Exercise Education & Counselling

6 months Calcium + D3 supplement

21 months

Study procedure

• **Without vitamin D deficiency**
 – Calcium 600 mg+ D3 200 IU (Oskept) 1 tab bid

• **With vitamin D deficiency (< 20 ng/mL)**
 – Vitamin D2 60,000 IU/week * 8 weeks then every 4 weeks **PLUS**
 Oskept 1 tab twice daily until 25-OHD > 30 mg/mL

• **Parameters of interest**
 – L2-L4 BMD by DEXA scan: BMD, BMD z-score
 – Vitamin D, Calcium, Parathyroid hormone (PTH)
Statistical Methods

• BMD z-score was calculated using age and sex-matched Thai adolescent norms (Lunar prodigy)1

• Comparison of changes in BMD and BMDz-score pre and post supplementation using signed-rank test

Result: Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>Total (N=24)</th>
<th>Persistent (N=13)</th>
<th>New (N=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>14.1 (13.0-14.9)</td>
<td>13.8 (12.9-15.1)</td>
<td>14.5 (13.3-14.8)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>15 (63%)</td>
<td>6 (46%)</td>
<td>9 (82%)</td>
</tr>
<tr>
<td>CD4 cell (cell/mm³)</td>
<td>706 (540-789)</td>
<td>738 (614-807)</td>
<td>610 (472-769)</td>
</tr>
<tr>
<td>% HIV RNA < 50 c/ml</td>
<td>21 (88%)</td>
<td>11 (85%)</td>
<td>10 (91%)</td>
</tr>
<tr>
<td>Tanner stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>15 (63%)</td>
<td>9 (69%)</td>
<td>6 (55%)</td>
</tr>
<tr>
<td>3-5</td>
<td>9 (37%)</td>
<td>4 (31%)</td>
<td>5 (45%)</td>
</tr>
</tbody>
</table>
Result: Pre and post supplement

<table>
<thead>
<tr>
<th>Data of 24 adolescents</th>
<th>Pre-supplement</th>
<th>Post-Supplement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD (g/cm²)</td>
<td>0.76 (0.70-0.86)</td>
<td>0.82 (0.78-0.92)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMD z-score</td>
<td>-2.59 (-3.02 to -2.35)</td>
<td>-1.70 (-2.76 to -1.10)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMD > -2z-score</td>
<td>0(0%)</td>
<td>14(58%)</td>
<td>-</td>
</tr>
<tr>
<td>25-OH vitamin D</td>
<td>31.2 (23.6-37.3)</td>
<td>28.7 (24.2-35.8)</td>
<td>0.573</td>
</tr>
<tr>
<td>Calcium</td>
<td>9.3 (9.0-9.5)</td>
<td>9.5 (9.2-9.9)</td>
<td>0.036</td>
</tr>
<tr>
<td>PTH level</td>
<td>58.2 (35.7-84.0)</td>
<td>42.8 (33.3-51.7)</td>
<td>0.055</td>
</tr>
</tbody>
</table>
Result: Change pre vs post supplement

<table>
<thead>
<tr>
<th>Data of 13 adolescents</th>
<th>Change Pre-Supplement</th>
<th>Change Post-supplement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval (month)</td>
<td>20.9 (20.5-21.6)</td>
<td>6.0 (5.8-6.7)</td>
<td>N/A</td>
</tr>
<tr>
<td>BMD gain (g/cm²)</td>
<td>0.063 (0.047-0.096)</td>
<td>0.057 (0.040-0.066)</td>
<td>0.133</td>
</tr>
<tr>
<td>BMD z-score change</td>
<td>-0.50 (-1.00 to 0.06)</td>
<td>0.65 (0.13 to 1.20)</td>
<td>0.028</td>
</tr>
<tr>
<td>25-OH vitamin D change</td>
<td>5.51 (2.02 to 11.95)</td>
<td>0.10 (-4.80 to 3.31)</td>
<td>0.075</td>
</tr>
<tr>
<td>Calcium change</td>
<td>-0.5 (-0.7 to -0.1)</td>
<td>0.45 (-0.2 to 0.9)</td>
<td>0.047</td>
</tr>
<tr>
<td>PTH level change</td>
<td>11.57 (-11.87 to 22.87)</td>
<td>-3.33 (-42.45 to 0.36)</td>
<td>0.314</td>
</tr>
</tbody>
</table>
Discussions (I)

• Improvement of bone mass accrual after 6 months of calcium and vit D supplement in pt. with low BMD

1 No improvement after 2 yrs of supplement among 30 HIV-infected children with baseline BMD 50th percentile

2 Improvement of BMD after 1 yr of supplement in 24 adult on TDF-based ART with baseline vit D or calcium deficiency (BMD change +2.4%, Low baseline BMD group +3.4%)

3 Improvement of BMD among 10-12 yrs old girls in Beijing Vitamin D-fortified milk supplement for 2 yrs versus control (change in BMD 8.9% versus 3.9%)

1 Arpardi SM. Am J Clin Nutr 2012; 95: 678-85
3 Du X. Br J Nutr 2004;92:159-68
Discussions (II)

Strength
- Longitudinal cohort comparing PRE-POST supplement
- Selected patient with low baseline BMD

Limitations
- Pilot study (N=24)
- Short term supplement for 6 months
- Whether the effect last after stop supplement

3. Du X. Br J Nutr 2004;92:159-68
Conclusions

- Improvement of bone mass accrual after 6 months of calcium and vitamin D supplement in HIV-infected adolescents who had low BMD.
 - In context of inadequate nutrition intake of calcium and vitamin D.

- Additional research is needed e.g.
 - Randomized placebo controlled trial
 - Duration of supplement
 - Long term effect after stop supplement
Acknowledgements

HIVNAT
Thanyawee Puthanakit
Torsak Bunupuradah
Wasana Prasitseubsai
Thongsuai Chuanjaroen
Sasiwimol Ubolyam

Siriraj, Mahidol U
Kulkanya Chokephaibulkit
Orasri Wittawatmongkol
Chantaphat Brukesawan
Voraporn Poomlek
Rachanee Suksawat
Pairunyar Nakavachara
Maleesatharn A

Prof. Joep Lange
Prof. Praphan Phanuphak
Prof. David Cooper
Co-directors of HIVNAT