An HCV Vaccine: Can we get there?

Andrea L. Cox, MD, PhD
Viral Hepatitis Center
No Conflicts of Interest
Outline

• Reasons to develop an HCV vaccine
• What constitutes protective immunity to HCV
• What challenges exist in HCV vaccine development
• Overcoming the challenges
• A prophylactic HCV vaccine is being tested in at-risk subjects for the first time
HCV- Do we need a vaccine?

• Therapies dramatically better but…
HCV- Do we need a vaccine?

- Treatment remains expensive and carries some side effects
HCV- Do we need a vaccine?

- Treatment remains expensive and carries side effects
- Drugs do not provide protection against reinfection
HCV- Do we need a vaccine?

- Treatment remains expensive and carries side effects
- Drugs do not provide protection against reinfection
- Finding the people who need treatment remains challenging
Identification of HCV Infected people is challenging

• Infection usually silent until ESLD present
Identification of HCV Infected people is challenging

• Infection usually silent until ESLD present
• Knowledge of infection status limited
 – 5% of those infected world-wide
Identification of HCV Infected people is challenging

• Infection usually silent until ESLD present

• Knowledge of infection status limited
 – 5% of those infected world-wide
 – 50% of those infected aware in US (HIV 80%)

Identification of HCV Infected people is challenging

- Infection usually silent until ESLD present
- Knowledge of infection status limited
 - 30% of those infected aware in US (HIV 80%)
 - 5% of those infected world-wide
 - Australia, Canada, France, Denmark, and Scotland as models
 - Aggressive screening

Identification of HCV Infected people is challenging

- Infection usually silent until ESLD present
- Knowledge of infection status limited
 - 30% of those infected aware in US (HIV 80%)
 - 5% of those infected worldwide
 - Australia, Canada, France, Denmark, and Scotland as models
 - Aggressive screening
 - 60-80% aware

Identification of HCV Infected people is challenging

- Infection usually silent until ESLD present
- Knowledge of infection status limited
- Highest risk groups are marginalized
 - IDUs

Identification of HCV Infected people is challenging

• Infection usually silent until ESLD present
• Knowledge of infection status limited
• Highest risk groups are marginalized
 – IDUs
 – Living in endemic regions of the world

Identification of HCV Infected people is challenging

- Infection usually silent until ESLD present
- Knowledge of infection status limited
- Highest risk groups are marginalized
 - IDUs
 - Living in endemic regions of the world
 - limited access to testing
 - poor needle injection and blood product hygiene
 - Limited access to therapies

Identification of HCV Infected people is challenging

- Infection usually silent until ESLD present
- Knowledge of infection status limited
- Highest risk groups are marginalized
- Treatment in the later stages doesn’t reverse all disease

Eradication of HCV reduces but doesn’t eliminate liver failure

HCV- Do we need a vaccine?

- US Department of HHS says we do
- US Dept HHS Viral Hepatitis Action Plan 2011:
 - “Development of a vaccine that prevents new HCV infections remains a high priority task.”
HCV- Do we need a vaccine?

• US Department of HHS says we do
• US Dept HHS Viral Hepatitis Action Plan 2011:
 – “Development of a vaccine that prevents new HCV infections remains a high priority task.”
 – Actions to be initiated in 2011:
 “Facilitate development of candidate hepatitis C vaccines designed to induce protective immune responses.”
What Are Protective Immune Responses?

- It’s in your genes...
rs12979860 C IL-28B allele associated with higher probability of natural clearance of HCV

<table>
<thead>
<tr>
<th>Gene</th>
<th>HIV association</th>
<th>Hepatitis association</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-C promoter SNP</td>
<td>Protective (Fellay, Science 2007)</td>
<td>HCV-possible protection (Thio et al. unpublished data)</td>
</tr>
<tr>
<td>IL-18 promoter SNP</td>
<td>Protective (Sobti et. al., BJMG, 2011)</td>
<td>HCV-protective against persistence in AA (Ping et al, JID 2008)</td>
</tr>
</tbody>
</table>
What Are Protective Immune Responses?

• It’s in your genes…

• And the immune response
T cell Responses Crucial in Control of HCV

- HLA association studies
- Chimpanzee CD8+ and CD4+ T cell depletion
- Association of breadth and magnitude of T cell response with viral clearance
- IFN-γ HCV specific CD8+ T cell responses are temporally correlated with reduction in viremia after infection

The Protective Immune Response…Can it be acquired?

- Reinfection does not always result in clearance- no protective immunity
- Some evidence that says yes…
Baltimore Before and After Acute Study of Hepatitis

18-35yo Active IDU
HCV EIA & RNA neg

Anti-HCV Ab = black bar HCV = red bar

Persistent Infection
Spontaneous Clearance
Protection from Persistent HCV

113 HCV Seroconverters (anti-HCV antibody+)

31 seroconverters control initial infection (27%)
82 seroconverters chronically-infected (73%)

22 cleared seroconverters assessed for reinfection

9 cleared seroconverters excluded from analysis of reinfection

11 subjects reinfected with heterologous virus (50%)

11 subjects - no new viremia
No reinfection (50%)

12 reinfections with sufficient follow-up to assess outcome
(2 subjects reinfected twice)

1 reinfection with insufficient follow-up to assess outcome

10 reinfections cleared (83%)

2 reinfections with persistent viremia (17%)

(P = .001)

Osburn et. al. Gastroenterology 2010;138:315–324
Decreased magnitude of viremia during reinfection

$P < 0.05$

includes persistently reinfected subjects

Osburn et. al. Gastroenterology 2010;138:315–324
Shorter duration of viremia during reinfection

P = 0.019

Osburn et. al. Gastroenterology 2010;138:315–324
Broadening of T cell responses in HCV Reinfection

Updated from Osburn et. al. Gastroenterology 2010;138:315–324
Repeated HCV Controllers-
83% clear

• Recurrent detectable viremia with broadening of the immune response:
 – Lower maximum HCV RNA
 – Shorter duration of viremia

• Subjects who have cleared a fourth, fifth, and sixth infection…
Super HCV Controllers
Is sterilizing immunity required?

• Sterilizing immunity is a high bar
• HCV vaccines in animal models have not provided sterilizing immunity
• When all else fails...
Lower your standards!
Is sterilizing immunity required?

• Almost all significant disease is from chronic infection
• After spontaneous clearance, documented reinfection is common and without sequelae

HCV- Can we make an effective vaccine?

• Challenges parallel to HIV
 – Highly diverse virus
Ray SC and Thomas DL. *PPID 7th ed*, Chapter 154 2009
HCV- Can we make an effective vaccine?

• Challenges parallel to HIV
 – Highly diverse virus
 – Increasing interest in vaccines that induce robust T cell responses
HCV- Can we make an effective vaccine?

• Challenges parallel to HIV
 – Highly diverse virus
 – Increasing interest in vaccines that induce robust T cell responses
 – Unsafe to use live attenuated or killed virus
HCV- Can we make an effective vaccine?

• Challenges parallel to HIV
 – Highly diverse virus
 – Increasing interest in vaccines that induce robust T cell responses
 – Unsafe to use live attenuated or killed virus
 – Current focus is to use vectors to deliver viral antigens in a system that induces robust innate and adaptive immune responses
HCV- Can we make an effective vaccine?

• Challenges parallel to HIV
 – Highly diverse virus
 – Unsafe to use live attenuated or killed virus
 – Current focus is to use vectors to deliver viral antigens in a system that induces robust innate and adaptive immune responses
 • Preexisting vector immunity limits responses
Preventing pre-existing anti-vector immunity from limiting vaccine efficacy

• Okairos search for novel adenoviral strains in non-human primates worldwide

• **Goals:** Discover adenoviral vectors that
 • Are highly immunogenic
 • Are easily manufactured to high titers
 • BUT do not stimulate cross reactive immunity (humans rarely exposed)
Preventing pre-existing anti-vector immunity from limiting vaccine efficacy

• **Success:**

 • Adenoviruses derived from chimpanzees (ChAd) differ from human adenovirus primarily in hexon (surface) proteins, making Ab cross reactivity low

 • many are highly immunogenic
Prophylactic vaccines to generate T cell immunity based on viral vectors

- Low seroprevalence chimpanzee and a human derived Adenoviruses – ChAd3, Ad6
- MVA attenuated strain, non-replicating in mammalian cells

- Vectored HCV antigen: “NSmut”
 - NS3-NS5B (NS = 1985 aa)
 - Several CD4 and CD8 T cell epitopes mapped in humans
 - Most conserved HCV region
 - Genotype I, subtype 1b

Aim: induce antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection – broadly targeted, durable, functional CD4+CD8+ T cell response
HCV Vaccine Healthy Volunteer Trial Summary

- AdCh3NSmut prime with MVANSmut boost is a highly potent inducer of T cell responses.
- All individuals responded the vaccination.
- The majority of subjects developed responses against multiple HCV proteins.
- Polyfunctional CD4$^+$ and CD8$^+$ T cells are induced.
- T cells responses across genotypes detected.
- Vaccines safe and well tolerated.

Swadling L et al., Science Translational Medicine; 5 November 2014; 6:(261)
Figure 2c

![Graph showing IFN-γ SFCs/10^6 PBMCs for various NS proteins (NS3p, NS3h, NS4, NS5A, NS5B I, NS5B II) with ChAd3 prime (circles) and MVA boost (triangles). Significant differences are indicated by asterisks.](image)
VIP: Vaccine is Prevention

• **Design**: Double blind, randomized, placebo controlled at JHU and UCSF
VIP: Vaccine is Prevention

- **Design**: Double blind, randomized, placebo controlled at JHU and UCSF

- **Population**: 18-45 yo male and female active injection drug users at high risk for but not infected with HCV RNA at screening
VIP: Vaccine is Prevention

- **Design:** Double blind, randomized, placebo controlled at JHU and UCSF

- **Population:** 18-45 yo male and female active injection drug users at high risk for but not infected with HCV RNA at screening

- **Size:** Total N=344 (±8)
VIP: Vaccine is Prevention

- **Design:** Double blind, randomized, placebo controlled at JHU and UCSF

- **Population:** 18-45 yo male and female active injection drug users at high risk for but not infected with HCV RNA at screening

- **Size:** Total N=344 (±8)

- **Goal:** assessment of safety, induction of HCV specific immune responses, and efficacy in preventing chronic HCV infection
VIP: Vaccine is Prevention

- **Design**: Double blind, randomized, placebo controlled at JHU and UCSF

- **Population**: 18-45 yo male and female active injection drug users at high risk for but not infected with HCV RNA at screening

- **Size**: Total N=344 (±8)

- **Goal**: assessment of safety, induction of HCV specific immune responses, and efficacy in preventing chronic HCV infection
• Two injections administered at 0 and 8 weeks: $\text{AdCh3NS}_{\text{mut1}}$ & $\text{MVA-NS}_{\text{mut}}$
• Immune responses assessed
• Two injections administered at 0 and 8 weeks: AdCh3NS_{mut1} & MVA-NS_{mut}
• Immune responses assessed
• HCV RNA tested monthly
• Subject participation:
 • Non-viremic subjects → followed 20 months
 • Viremic subjects → referred for Rx, followed 9 months after virus detected or 20 months
Conclusions

• A prophylactic HCV vaccine is needed.
• Protective immunity likely exists *in vivo*.
• As with HIV, it will not be easy to create a successful vaccine.
• A new prophylactic vaccine is in trials for the first time in at risk subjects- data due out in early 2016
Acknowledgements

William Osburn
Michael Melia
Shaneca Bowden
Donald Brown

Richard Antrobus
Eleanor Barnes
Anthony Brown
Paul Kleenerman
Leo Swadling

Kimberly Page
Paula Lum
Alice Asher

Our Study Subjects

Stefania Capone
Antonella Folgori
Alfredo Nicosia
Elisa Scarselli
Cinzia Traboni