Mucosal Tissue Pharmacokinetics of Maraviroc and Raltegravir in Women: Implications for Chemoprophylaxis

Mackenzie L. Cottrell, Heather M.A. Prince, Craig Sykes, Nicole White, Stephanie Malone, Evan S. Dellon, Ryan D. Madanick, Nicholas J. Shaheen, Michael G. Hudgens, Jacob Wulff, Kristine B. Patterson, Angela D.M. Kashuba

University of North Carolina
UNC Eshelman School of Pharmacy and School of Medicine
Once Daily PrEP May Not Be Feasible in Women

<table>
<thead>
<tr>
<th>Study Title</th>
<th>Study Population</th>
<th>Treatment(s)</th>
<th>Effect Size HR (95% CI)</th>
<th>PK Evidence of Recent Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partners PrEP</td>
<td>Serodiscordant Couples</td>
<td>Daily Oral TDF</td>
<td>0.33 (0.19, 0.56)</td>
<td>>80%</td>
</tr>
<tr>
<td>Partners PrEP</td>
<td>Serodiscordant Couples</td>
<td>Daily Oral TDF/FTC</td>
<td>0.25 (0.13, 0.45)</td>
<td>>80%</td>
</tr>
<tr>
<td>iPrEx</td>
<td>MSM</td>
<td>Daily Oral TDF</td>
<td>0.56 (0.37, 0.85)</td>
<td>28%</td>
</tr>
<tr>
<td>TDF2</td>
<td>Heterosexuals</td>
<td>Daily Oral TDF/FTC</td>
<td>0.38 (0.17, 0.84)</td>
<td>78%</td>
</tr>
<tr>
<td>Bangkok TDF</td>
<td>IV Drug Users</td>
<td>Daily Oral TDF/FTC</td>
<td>0.51 (0.29, 0.91)</td>
<td>65%</td>
</tr>
<tr>
<td>CAPRISA004</td>
<td>Women</td>
<td>BAT24 TFV Gel</td>
<td>0.63 (0.42, 0.94)</td>
<td>NA</td>
</tr>
<tr>
<td>Futility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEM-PrEP</td>
<td>Women</td>
<td>Daily Oral TDF/FTC</td>
<td>Futile</td>
<td><25%</td>
</tr>
<tr>
<td>VOICE</td>
<td>Women</td>
<td>Daily Oral TDF</td>
<td>Futile</td>
<td><30%</td>
</tr>
<tr>
<td>VOICE</td>
<td>Women</td>
<td>Daily Oral TDF/FTC</td>
<td>Futile</td>
<td><30%</td>
</tr>
<tr>
<td>VOICE</td>
<td>Women</td>
<td>Daily TFV Gel</td>
<td>Futile</td>
<td><30%</td>
</tr>
</tbody>
</table>

FTC Emtricitabine, MSM men who have sex with men, TDF Tenofovir disoproxil fumarate, TFV Tenofovir

PrEP Adherence Requirement May Differ by Exposure Site

Phase I, single center, open-label, dose ranging single-dose Maraviroc and Raltegravir PK study

- Study Aims
 1. Determine if mucosal tissue concentrations are dose proportional
 2. Develop a predictive PK model of tissue distribution

- UNC IRB # 10-1393

- ClinicalTrials.gov: NCT01330199
Study Design

Inclusion Criteria
- Healthy, premenopausal women
- 18-49 years
- Intact gastrointestinal and genital tracts
- Regular menstrual cycles
- History of normal Pap smear

Exclusion Criteria
- Medication allergies
- Clinically significant medical conditions
- Abnormal laboratory tests
- Symptomatic bacterial vaginosis or any STI
- Pregnant or lactating
- Positive urine drug screen

Dose w/in 45 days

Screening visit

Intensively sampled blood plasma

Dose

0 0.5 1 2 3 4 6 9 12 18 24 36 48

PK visit (hours)

7-10 days after last biopsy

Follow up visit

Sparsely sampled cervical, vaginal, and rectal tissue
Treatment Arms

Total Subjects
N=49

Maraviroc
N=25

50%
150mg
N=8

100%
300mg
N=9

200%
600mg
N=8

Withdrew
N=1

Raltegravir
N=24

50%
200mg
N=8

100%
400mg
N=8

200%
800mg
N=8

Not Analyzed
N=1

Maraviroc N=25

150mg N=8

300mg N=9

600mg N=8

Withdrew N=1

Raltegravir N=24

200mg N=8

400mg N=8

800mg N=8

Not Analyzed N=1
Methods

- Sample Analysis – LC-MS/MS
 - Plasma calibration range: 5-5000ng/ml
 - Tissue homogenate calibration range: 0.02-20ng/ml

- Data Analysis - WinNonlin®
 - Individual plasma NCA
 - Composite tissue NCA

- Statistical Analysis
 - Dose proportionality
 - Power model equation:\(AUC = e^{\beta_1 \cdot \text{Dose}^{\beta_2}} \)
 - Assumed if the 90% CI of slope (\(\beta_1 \)) falls within: 0.64, 1.36
 - SigmaPlot ® Mann-Whitney Rank Sum and Wilcoxon Signed Rank test, where appropriate
 - SigmaPlot ® Linear regression

Sample Demographics

<table>
<thead>
<tr>
<th>Variable</th>
<th>MRV (n=24)</th>
<th>RAL (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>24 (100)</td>
<td>24 (100)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>16 (67)</td>
<td>18 (75)</td>
</tr>
<tr>
<td>African American</td>
<td>7 (29)</td>
<td>4 (17)</td>
</tr>
<tr>
<td>Asian American</td>
<td>1 (4)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>American Indian</td>
<td>0 (0)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>27 (22-31)</td>
<td>22 (21-27)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>67 (60-76)</td>
<td>63 (58-72)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.1 (21.5-26.3)</td>
<td>22.5 (20.8-26.5)</td>
</tr>
</tbody>
</table>
Safety

<table>
<thead>
<tr>
<th>Adverse Event (≤ Grade 1)</th>
<th>Maraviroc [n (%)]</th>
<th>Raltegravir [n (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>8 (32)</td>
<td>10 (42)</td>
</tr>
<tr>
<td>Headache</td>
<td>1 (4)</td>
<td>5 (21)</td>
</tr>
<tr>
<td>Nausea</td>
<td>2 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (4)</td>
<td>0</td>
</tr>
<tr>
<td>Bowel disturbances</td>
<td>1 (4)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Elevated transaminases</td>
<td>0</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Pelvic cramps</td>
<td>0</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Vaginal dryness</td>
<td>0</td>
<td>1 (4)</td>
</tr>
</tbody>
</table>

Graph

- **Y-axis:** % Subjects Reporting Adverse Events
- **X-axis:** Dose Levels (50%, 100%, 200%)
- **Legend:**
 - Maraviroc
 - Raltegravir

The graph shows the percentage of subjects reporting adverse events at different dose levels for Maraviroc and Raltegravir.
Maraviroc Plasma Exposure and Dose Proportionality
Median ± IQR (N=24)

\[\beta_1 \ (90\% \ CI) = 1.14 \ (0.88, 1.4) \]

Prespecified range = (0.64, 1.36)
Raltegravir Plasma Exposure and Dose Proportionality
Median ± IQR (N=23)

Log Dose
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
Log AUC₀-48
3.4 3.6 3.8 4.0 4.2 4.4 4.6

Regression Line
r²=0.64, p<0.001

β₁ (90% CI) = 0.79 (0.56, 1.02)
Prespecified range = (0.64, 1.36)
Similar Exposure between the Vaginal and Cervical Tissue

Maraviroc

Cervical Tissue
Vaginal Tissue

p=0.074

Raltegravir

Cervical Tissue
Vaginal Tissue

p=1.00
Maraviroc Pharmacokinetics in Tissue (Median ± Range)

Cervical/Vaginal Tissue

- Tmax = 6 (6,6) hr
- BLQ/BLD=0/48

Rectal Tissue

- Tmax = 6 (6,24) hr
- BLQ/BLD=0/24
Raltegravir Pharmacokinetics in Tissue
(Median ± Range)

Cervical/Vaginal Tissue

- **Tmax** = 6 (6,6) hr
- BLQ = 2/46, BLD = 1/46

Rectal Tissue

- **Tmax** = 24 (6,48) hr

BLQ/BLD = 0/23
Linearity and Dose Proportionality in Tissue

Maraviroc

CT/VT β_1 (90% CI) = 1.19 (0.9, 1.47)
RT β_1 (90% CI) = 1.56 (0.67, 2.46)

Raltegravir

CT/VT β_1 (90% CI) = 0.78 (0.34, 1.24)
RT β_1 (90% CI) = 2.35 (0.81, 3.89)

Prespecified range = (0.64, 1.36)
Exposure is Higher in the Rectal Tissue than Cervical/Vaginal Tissue [Median (±Range)]

- **Maraviroc**:
 - Median: 10 (8, 16)
 - Exposure is ~10-Fold higher in Rectal Tissue.

- **Raltegravir**:
 - Median: 4 (4, 6)
 - Exposure is ~25-Fold higher in Rectal Tissue.

* p<0.05
Plasma Concentrations Correlate with Cervical/Vaginal but not Rectal Tissue

Cervical/Vaginal Tissue

Rectal Tissue

Plasma Concentration (ng/ml)

Tissue Concentration (ng/g)

Maraviroc
Raltegravir

$r^2=0.72, p<0.001$

$r^2=0.76, p<0.001$

$r^2=0.04, p=0.786$

$r^2=0.001, p>0.4$
Conclusions

- **Rapid distribution**
 - CT/VT: Tmax ~6hr
 - RT: Tmax ~ 6hr for maraviroc and ~24hr for raltegravir
- **No difference between CT and VT concentrations**
- **Maraviroc tissue exposure vs dose**
 - ↑ 4 fold [CT/VT] and 8-fold [RT] across dosing range
 - Linear trend; Not dose proportional
- **Raltegravir tissue exposure vs dose**
 - ↑ 2 fold [CT/VT] and 28-fold [RT] across dosing range
 - Linear trend in CT/VT but not RT; Not dose proportional
- **10-25-fold higher concentration in RT than in the CT/VT**
- **Plasma concentrations correlate with CT/VT but not RT**
- **Future directions**: Predictive PK/PD modeling of concentrations achieved by various dosing schemes
Acknowledgements

National Institutes of Allergy and Infectious Diseases
Grant U01AI09503

National Institutes of General Medical Sciences
Grant 5T32GM086330

Centers for AIDS Research
Grant P30 AI50410

National Institutes of Health Contributors
Hans Spiegal, MD and Fulvia Veronese, Ph.D.