Acute hepatitis C reinfection and late relapse

Thomas Martin
ACF ID/MM Guy’s and St Thomas’ NHS Foundation Trust
Overview

• Definitions
• Late relapse
• Reinfection
• HCV quasispecies and relapse
• Late relapse vs. reinfection
HCV infection relapse definitions

- Null or partial response
- Early Relapse
- Late Relapse

Treatment period:
- EOT
- 24 weeks (SVR)
HCV multiple infection definitions

- No formal definitions
- Coinfection
 - Infection with more than 1 genetically distinct virus on initial exposure
- Superinfection
 - Infection with a genetically distinct virus upon re-exposure
- Reinfection
 - Detection of HCV viraemia following exposure to HCV in an individual who has either previously spontaneously cleared or has been treated for HCV infection
- Late relapse
 - Re-remergence of a pre-existing HCV viraemia 24 weeks or more following the end of treatment
HCV reinfection and late relapse

• No formal definitions
• Coinfection
 – Infection with more than 1 genetically distinct virus on initial exposure
• Superinfection
 – Infection with a genetically distinct virus upon re-exposure
• Reinfection
 – Detection of HCV viraemia following exposure to HCV in an individual who has either previously spontaneously cleared or has been treated for HCV infection
• Late relapse
 – Re-remergence of a pre-existing HCV viraemia 24 weeks or more following the end of treatment
Overview

• Definitions
• Late relapse
• Reinfection
• HCV quasispecies and relapse
• Late relapse vs. reinfection
HCV late relapse is rare

- In long-term prospective follow up of patients enrolled in phase III trials for pegylated IFN/Rib
- N=1343; mean duration of follow up post-SVR was 47 months (range 10-87 months)
- Relapses were seen in only 0.9%
- Durable SVR found for HIV/HCV coinfected patients (N=100) (99%)
- Relapses occurred at mean of 666 days (95 weeks)

Swain MG et al. Gastroenterology 2010;139:1593-1601
HCV late relapse is rare among HIV infected individuals

- Retrospective analysis of 77 HIV/HCV coinfected patients
- Mean follow up following SVR 58 months +/- 28 months (4466 patient-months f/u)
- GT1 – 19%; GT 2+3 – 54%; GT4 – 4%
- Mean CD4 508
- No HCV re-emergence

Soriano et al. Antiviral Ther 2004; 9:987-992
Relapse following treatment mostly occurs within 12 weeks of EOT

- 270 individuals treated for chronic HCV infection with an EOT response
 - 143 of these HIV coinfected

3 very late relapses

Late relapse could be confused with reinfection

• Of the 3 late relapses
 – 2 were HIV positive
 • One had distantly related virus at relapse (gt1b)
 • One had closely related viral sequences (gt3)
 – 1 was HIV negative
 • Had distantly related viral sequences pre-post- (gt1b)

• In a follow-up case series of 4 patients with late relapse (36-48wk) 50% had genetically similar virus pre- and post-treatment

Overview

• Definitions
• Late relapse
• Reinfection
• HCV quasispecies and relapse
• Late relapse vs. reinfection
HCV reinfection is possible among chimpanzees

Challenges performed with same or different virus

Periods of viraemia in black box

HCV reinfection is possible among chimpanzees

Chimp 1: challenged with same virus develops new viraemia and hepatitis

HCV reinfection is possible among chimpanzees

Chimp 2: challenged with a different virus develops new viraemia and hepatitis

HCV reinfection is possible among chimpanzees

Chimp 4: develops viraemia after each new challenge except for last challenge where it relapses with the penultimate virus into chronic infection
HCV reinfection among chimpanzees

Peak ALT appeared to decline with later challenges; however, necroinflammatory change consistent with hepatitis present after each episode.

<table>
<thead>
<tr>
<th>Chimpanzee</th>
<th>First challenge</th>
<th>Second challenge</th>
<th>Third challenge</th>
<th>Fourth challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source of HCV inoculum</td>
<td>Baseline ALT</td>
<td>Peak ALT</td>
<td>Source of HCV inoculum</td>
</tr>
<tr>
<td>963</td>
<td>Chronic PTH, strain F, third chimpanzee passage (1)</td>
<td>30</td>
<td>220 (12)</td>
<td>Chronic PTH, strain F, third chimpanzee passage (1)</td>
</tr>
<tr>
<td>793</td>
<td>Acute PTH, strain K, first chimpanzee passage (1)</td>
<td>23</td>
<td>418 (12)</td>
<td>Chronic PTH, strain F, third chimpanzee passage (1)</td>
</tr>
<tr>
<td>502</td>
<td>Chronic PTH, strain F, third chimpanzee passage (1)</td>
<td>21</td>
<td>412 (13)</td>
<td>Acute PTH, strain H (1)</td>
</tr>
<tr>
<td>189</td>
<td>Acute PTH, strain K (3)</td>
<td>19</td>
<td>219 (15)</td>
<td>Chronic PTH, strain F (5)</td>
</tr>
<tr>
<td>196</td>
<td>Chronic PTH, strain G (75)</td>
<td>17</td>
<td>62 (13)</td>
<td>Chronic PTH, strain F (5)</td>
</tr>
</tbody>
</table>

*ALT fluctuated between 43 and 59 U/liter during the duration of the study, in parallel with the persistence of HCV viremia.
HCV reinfection among PWID

<table>
<thead>
<tr>
<th>Study populations</th>
<th>Number of new infections during follow-up</th>
<th>Median follow-up (years)</th>
<th>Incidence rate per 100 person-years</th>
<th>Crude incidence rate ratio</th>
<th>Adjusted ratio (95% CI)</th>
<th>p value</th>
<th>Median HCV RNA testing interval for patients previously infected (months)</th>
<th>Clearance of reinfection in patients whose infection had previously cleared</th>
<th>Reinfecion in prevalent or incident cases?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehta et al.</td>
<td>Not infected (n=164) vs HCV clearance (n=98)</td>
<td>35 vs 12</td>
<td>2.4 vs 2.1</td>
<td>0.45</td>
<td>0.23 (0.23–0.88)†</td>
<td>0.02</td>
<td>6.3 (6)</td>
<td>6 of 9 (67%)‡</td>
<td>Prevalent</td>
</tr>
<tr>
<td>Grebely et al.</td>
<td>Not infected (n=926) vs HCV clearance (n=152)</td>
<td>172 vs 14</td>
<td>2.8 vs 2.2</td>
<td>0.22</td>
<td>0.23 (0.10–0.51)$</td>
<td><0.001</td>
<td>15.6</td>
<td>4 of 14 (29%)</td>
<td>Prevalent</td>
</tr>
<tr>
<td>Micallif et al.</td>
<td>Not infected (n=423) vs HCV clearance (n=18)</td>
<td>114 vs 13</td>
<td>1.0 vs 1.2</td>
<td>2.40</td>
<td>1.11†</td>
<td>0.80</td>
<td>5.0 (6)</td>
<td>3 of 7 (43%)</td>
<td>Incident</td>
</tr>
<tr>
<td>Aitken et al.</td>
<td>Not infected (n=55) vs HCV clearance (n=50)</td>
<td>10 vs 23</td>
<td>NA</td>
<td>3.0</td>
<td>2.54 (1.11–5.78)‡</td>
<td>0.027</td>
<td>3.8 (3)</td>
<td>9 of 22 (41%)</td>
<td>Prevalent and incident</td>
</tr>
<tr>
<td>van de Laar et al.</td>
<td>Not infected (n=168) vs HCV clearance (n=24)</td>
<td>58 vs 9</td>
<td>3.6 vs 0.5</td>
<td>1.9</td>
<td>NA</td>
<td>NA</td>
<td>7.3 (4–6)</td>
<td>3 of 9 (33%)</td>
<td>Incident</td>
</tr>
<tr>
<td>Page et al.</td>
<td>Not infected (n=380) vs HCV clearance (n=27)</td>
<td>132 vs 7</td>
<td>NA</td>
<td>0.92</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3 of 7 (100%)</td>
<td>Incident</td>
</tr>
<tr>
<td>Osburn et al.</td>
<td>Not infected (n=179) vs HCV clearance (n=22)</td>
<td>62 vs 11</td>
<td>NA</td>
<td>1.11</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10 of 12 (83%)</td>
<td>Incident</td>
</tr>
<tr>
<td>Currie et al.</td>
<td>HCV clearance (n=29)</td>
<td>0</td>
<td>5.5</td>
<td>0.0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Differs from 0.9 of 29 (30%)</td>
<td>Prevalent</td>
</tr>
<tr>
<td>Grebely et al.</td>
<td>HCV clearance (n=30)</td>
<td>2</td>
<td>1.1</td>
<td>6.1</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>2 of 2 (100%)</td>
<td>Incident</td>
</tr>
</tbody>
</table>

HCV=hepatitis C virus. NA=not available. *Scheduled interval given in parentheses when available. †Hazard ratio. ‡Restricted to HIV-negative participants. $Odds ratio. †Incidence rate ratio. ||Data taken from van den Berg et al. **Data taken from Cox et al.

HCV Reinfection among HIV MSM

• Jones et al. 2010 studied 22 individuals with re-emergent HCV
 • Of these, 9 individuals had paired, amplifiable HCV RNA
 • 1 had a genotype switch at 19 months following EOT
 • 6 of remaining 8 had genetically divergent samples when comparing pre- and post-treatment strains
 • Of these 6, 2 had re-emergent viraemia within 24 weeks of EOT
• Further 3 individuals without paired samples demonstrated a genotype switch with re-emergent HCV

Phylogenetics suggest that re-emergent viraemia represents reinfection
But in some cases a relapse is more probable
There appears to be high reinfection among HIV MSM in Europe: Amsterdam

- 56 patients HIV MSM negative at EOT
- 16 had re-emergent viraemia
- 5 with the same virus as pre-treatment: definite relapse
- 3 reinfected with ‘different’ virus but same genotype
- 8 were genotype switches

Reinfection rate of 15.2/100py

HCV Reinfection Incidence

- Overall reinfection rate: 7.8 per 100 py (95% CI 5.8-10.5 per 100py)
- Post-treatment: 9.6 per 100py (95% CI 6.6-14.1/100py)
- Post-spontaneous clearance: 4.2 per 100py (95% CI 1.7-10/100py)

Comparing reinfection post-treatment versus post-spontaneous clearance: p=0.15
HCV Reinfection Incidence HIV MSM

Second reinfection: 23.2 per 100 py (95%CI 11.6-43.4 per 100py)
Overall reinfection outcomes are good (N=47)

- No treatment N=1
- Spontaneous clearance N=13 (20%)
- Treatment failure N=7
- SVR N=26 (73% GT 1+4; 100% GT 2+3)
Reinfection across Europe

- 553 patients from 7 NEAT centres with cured acute HCV since 2001
- 141 with at least one re-infection (25.5%)
- 1509 patient years of follow-up; median 2.1 years
- Incidence rate: 7.82/100 patient years

Ingilitz P et al. on behalf of NEAT. EASL 2014
Factors associated with spontaneous clearance

<table>
<thead>
<tr>
<th></th>
<th>Spontaneous Clearance N=19</th>
<th>No Clearance N=94</th>
<th>Univariate p-value</th>
<th>Odds ratio</th>
<th>95% -CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age [years]</td>
<td>39</td>
<td>40</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median baseline CD4-cells [/ µl] (IQR)</td>
<td>491 (382-686)</td>
<td>541 (401-716)</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline HIV-RNA <50cop/ ml [%]</td>
<td>50</td>
<td>54</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAART [%]</td>
<td>58</td>
<td>67</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL28B CC genotype [%]</td>
<td>71</td>
<td>44</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline HCV-RNA [IU/ ml] (IQR)</td>
<td>1.7x10^5 (5910-2x10^6)</td>
<td>3.5x10^5 (44000-2.5x10^6)</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV genotype 1 vs. non-1 (%)</td>
<td>64</td>
<td>75</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV genotype switch (%)</td>
<td>42</td>
<td>47</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance of precedent episode (%)</td>
<td>32</td>
<td>9</td>
<td>0.02</td>
<td>4.6</td>
<td>1.3-15.9</td>
</tr>
<tr>
<td>Median maximum ALT [U/ I] (IQR)</td>
<td>489 (160-1179)</td>
<td>312 (172-543)</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median duration between episodes [weeks] (IQR)</td>
<td>129 (94-218)</td>
<td>145 (102-230)</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBsAG positivity [%]</td>
<td>0</td>
<td>0</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ingilitz P et al. Oral presentation EACS 2013
Overview

- Definitions
- Late relapse
- Reinfection
- HCV quasispecies and relapse
- Late relapse vs. reinfection
Pre-treatment, multiple strains of HCV often coexist

- **HCV mono-infection**
 - 10% coinfected with multiple incident genotypes
 - Among PWID, superinfection occurs leading to further viral diversity
 - Superinfection incidence similar to primary infection incidence

- **Acute hepatitis C virus infection among HIV infected individuals**
 - Upwards of 40% of HIV/HCV coinfected subjects have multiple strains of HCV
 - Recent study conducted a Study of 15 individuals performing deep sequencing on pre-treatment samples of acute HCV
 - all had multiple strains, subtypes or genotypes
 - All had 2-6 strains of genotype 1a
 - 6 had more than 1 viral subtype (eg 1a and 1b)
 - 1 had more than 1 genotype

Virological failure may be due to emergence of minority strains in HCV/HIV pts

- Next-generation sequencing on 15 patients who failed to achieve SVR
 - 6 null response
 - 3 partial response
 - 6 relapsed

- Study compared RNA from the E2 HVR-1 region pre- and post-treatment with potential outcomes being:
 - Persistent infection same dominance
 - Persistent infection new dominance
 - Persistent infection new variant detected

Persistence of the dominant strain is the cause of treatment failure in 5 of 15 cases.

<table>
<thead>
<tr>
<th>ID</th>
<th>Clinical outcome</th>
<th>Pairwise distance (Sanger)</th>
<th>Pairwise distance (NGS)</th>
<th>New Dominance</th>
<th>New Variants</th>
<th>Cleared Variants</th>
<th>Final conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>P38</td>
<td>Null response</td>
<td>0.19</td>
<td>0.08</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P63</td>
<td>Null response</td>
<td>0.03</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P67</td>
<td>Null response</td>
<td>0.04</td>
<td>0.04</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P81</td>
<td>Null response</td>
<td>0.48</td>
<td>0.06</td>
<td>13%</td>
<td>1</td>
<td>3</td>
<td>Persistent infection (New dominance and new variant detected)</td>
</tr>
<tr>
<td>P112</td>
<td>Null response</td>
<td>0.17</td>
<td>0.01</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P118</td>
<td>Null response</td>
<td>0.47</td>
<td>0.01</td>
<td>3%</td>
<td>0</td>
<td>5</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P21</td>
<td>Partial response</td>
<td>0.27</td>
<td>0</td>
<td>NA</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New dominance and new variant detected)</td>
</tr>
<tr>
<td>P31</td>
<td>Partial response</td>
<td>0.08</td>
<td>0.08</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P105</td>
<td>Partial response</td>
<td>0.46</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P75</td>
<td>Relapse</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P76</td>
<td>Relapse</td>
<td>0.24</td>
<td>0.05</td>
<td>3.2%</td>
<td>0</td>
<td>4</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P101</td>
<td>Relapse</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P57</td>
<td>Relapse</td>
<td>0.33</td>
<td>0.03</td>
<td>9%</td>
<td>0</td>
<td>2</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P131</td>
<td>Relapse</td>
<td>0.27</td>
<td>0.05</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P141</td>
<td>Relapse</td>
<td>0.24</td>
<td>0.01</td>
<td>3.0%</td>
<td>0</td>
<td>3</td>
<td>Persistent infection (New dominance)</td>
</tr>
</tbody>
</table>

5 of 15 had evidence of persistent infection of the dominant strain. The majority occurred among null responders.
In 6 cases, a previous minority variant became dominant following treatment.

<table>
<thead>
<tr>
<th>ID</th>
<th>Clinical outcome</th>
<th>Pairwise distance (Sanger)</th>
<th>Pairwise distance (NGS)</th>
<th>New Dominance</th>
<th>New Variants</th>
<th>Cleared Variants</th>
<th>Final conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>P38</td>
<td>Null response</td>
<td>0.19</td>
<td>0.08</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P63</td>
<td>Null response</td>
<td>0.03</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P67</td>
<td>Null response</td>
<td>0.04</td>
<td>0.04</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P81</td>
<td>Null response</td>
<td>0.48</td>
<td>0.06</td>
<td>13%</td>
<td>1</td>
<td>3</td>
<td>Persistent infection (New dominance and new variant detected)</td>
</tr>
<tr>
<td>P112</td>
<td>Null response</td>
<td>0.17</td>
<td>0.01</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P118</td>
<td>Null response</td>
<td>0.47</td>
<td>0.01</td>
<td>3%</td>
<td>0</td>
<td>5</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P21</td>
<td>Partial response</td>
<td>0.27</td>
<td>0</td>
<td>NA</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New dominance and new variant detected)</td>
</tr>
<tr>
<td>P31</td>
<td>Partial response</td>
<td>0.08</td>
<td>0.08</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P105</td>
<td>Partial response</td>
<td>0.46</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P75</td>
<td>Relapse</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P76</td>
<td>Relapse</td>
<td>0.24</td>
<td>0.05</td>
<td>3.2%</td>
<td>0</td>
<td>4</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P101</td>
<td>Relapse</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P57</td>
<td>Relapse</td>
<td>0.33</td>
<td>0.03</td>
<td>9%</td>
<td>0</td>
<td>2</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P131</td>
<td>Relapse</td>
<td>0.27</td>
<td>0.05</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P141</td>
<td>Relapse</td>
<td>0.24</td>
<td>0.01</td>
<td>3.0%</td>
<td>0</td>
<td>3</td>
<td>Persistent infection (New dominance)</td>
</tr>
</tbody>
</table>

6 of 15 had evidence of new dominance of a previously minority variant.
In 6 cases there was a new variant detectable following treatment.

6 of 15 had evidence of a new variant post-treatment not present pre-treatment.

<table>
<thead>
<tr>
<th>ID</th>
<th>Clinical outcome</th>
<th>Pairwise distance (Sanger)</th>
<th>Pairwise distance (NGS)</th>
<th>New Dominance</th>
<th>New Variants</th>
<th>Cleared Variants</th>
<th>Final conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>P38</td>
<td>Null response</td>
<td>0.19</td>
<td>0.08</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P63</td>
<td>Null response</td>
<td>0.03</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P67</td>
<td>Null response</td>
<td>0.04</td>
<td>0.04</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P81</td>
<td>Null response</td>
<td>0.48</td>
<td>0.06</td>
<td>13%</td>
<td>1</td>
<td>3</td>
<td>Persistent infection (New dominance and new variant detected)</td>
</tr>
<tr>
<td>P112</td>
<td>Null response</td>
<td>0.17</td>
<td>0.01</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P118</td>
<td>Null response</td>
<td>0.47</td>
<td>0.01</td>
<td>3%</td>
<td>0</td>
<td>5</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P21</td>
<td>Partial response</td>
<td>0.27</td>
<td>0</td>
<td>NA</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New dominance and new variant detected)</td>
</tr>
<tr>
<td>P31</td>
<td>Partial response</td>
<td>0.08</td>
<td>0.08</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P105</td>
<td>Partial response</td>
<td>0.46</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P75</td>
<td>Relapse</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P76</td>
<td>Relapse</td>
<td>0.24</td>
<td>0.05</td>
<td>3.2%</td>
<td>0</td>
<td>4</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P101</td>
<td>Relapse</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>3</td>
<td>Persistent infection</td>
</tr>
<tr>
<td>P57</td>
<td>Relapse</td>
<td>0.33</td>
<td>0.03</td>
<td>9%</td>
<td>0</td>
<td>2</td>
<td>Persistent infection (New dominance)</td>
</tr>
<tr>
<td>P131</td>
<td>Relapse</td>
<td>0.27</td>
<td>0.05</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>Persistent infection (New variant detected)</td>
</tr>
<tr>
<td>P141</td>
<td>Relapse</td>
<td>0.24</td>
<td>0.01</td>
<td>3.0%</td>
<td>0</td>
<td>3</td>
<td>Persistent infection (New dominance)</td>
</tr>
</tbody>
</table>
Viral relapse with same strain of virus but elimination of minority strains

Same strain dominant pre- and post-treatment

3 minority variants detectable pre-treatment but not post-treatment
Viral relapse with emergence of 2 new variants post-treatment (undetectable or superinfection)

Persistence of low levels of previously dominant strain post-treatment

Elimination of 3 minority strains post-treatment

Emergence of 2 new strains post-treatment
If only looking at dominant strains we can’t differentiate reinfection/relapse

- Jones et al. 2010 studied 22 individuals with re-emergent HCV
- Of these, 9 individuals had paired, amplifiable HCV RNA
 - 1 had a genotype switch at 19 months following EOT
 - 6 of remaining 8 had genetically divergent samples when comparing pre- and post-treatment strains
- Of these 6, 2 had re-emergent viraemia within 24 weeks of EOT
- Further 3 individuals without paired samples demonstrated a genotype switch with re-emergent HCV

Some patients included may in fact be late relapses

- 56 patients HIV MSM negative at EOT
- 16 had re-emergent viraemia
- 5 with the same virus as pre-treatment: definite relapse
- 3 reinfected with ‘different’ virus but same genotype
 - 2 of these within 24 weeks of EOT
- 8 were genotype switches

Definitions

Reinfection
• Any newly positive HCV RNA PCR 24 weeks or more following end of treatment or clearance of the virus; or
• Newly positive HCV RNA PCR within 24 weeks of end of treatment or clearance if reinfeated with a different genotype

Following treatment

Following spontaneously clearance
Time to first reinfection (N=44) is long following EOT
Reinfection (wk 24-48) outcomes are consistent with treatment of primary infections

- Successfully treated: 78%
- Relapse: 17%
- Spontaneous clearance: 17%

Number of individuals (N=12)
What about late relapse?

• Reinfection
 – Detection of HCV viraemia following exposure to HCV in an individual who has either previously spontaneously cleared or has been treated for HCV infection

• Late relapse
 – Re-remergence of a pre-existing HCV viraemia 24 weeks or more following the end of treatment

• No published studies to date looking at emergence of minority strains in late relapse period

• New viraemia after 24 weeks post-EOT could represent either reinfection or late relapse

• May have an impact on reinfection studies to date
Late relapses do not explain the scale of re-emergent virus post-SVR

- Late relapse among HIV/HCV
 - Swain: 0.9% after 95 weeks (N=100)
 - Medrano: 1.4% after 48 weeks (N=143)
 - Soriano: 0% after 58 months (N=77)

- Reinfection among HIV/HCV MSM post-treatment
 - Lambers: 33% at 48 weeks
 - Martin: 25% at 48 weeks
 - Ingilitz: 25.1% with median f/u 2.1 years
Conclusions

• Re-emergent virus post-SVR occurs in a significant proportion of HIV infected individuals
• Likely to represent predominantly reinfection rather than late relapse; however, further studies are required
• Re-treatment following re-emergence is possible and is effective
Questions yet to be answered

• Will the advent of DAAs lead to an increase in risk behaviour and therefore reinfection?
• Is there a late relapse rate associated with IFN free DAA regimens?
• Does recurrent infection have a more deleterious effect on liver disease progression?
• Are there risk associations with reinfection? (eg drug use, sexual risk behaviours, STIs)
Acknowledgements

- St Stephen’s AIDS Trust
- National Institute for Health Research (NIHR)
- Medical Research Council (MRC)