refractory anaemia: a case study

Dr Kamarul Azahar Mohd Razali
Paediatric Institute
Hospital Kuala Lumpur
Background perspective

• FA, 10yr old ♂, orphan, NGO-based care
• 2001: diagnosed at 2yrs old, symptomatic
 HAART initiated: ZDV/3TC/RTNV
 re-HAART: ZDV/3TC/EFZ
• 2007: treatment failure (v/load-5.39; CD4-9%)
 changed HAART to d4T/3TC/KAL
• 2009: lipodystrophy, switched to ZDV/3TC/KAL
21/4/2011

history
• cough + lethargy x 4/7
• pale looking x 2/7

vital signs
• BP: 96/50; HR: 86; RR: 30
• afebrile
• hydration - moist oral mucosa
• perfusion: capillary refill time<2s, pulse volume √
Physical findings:

- Bilateral perforated tympanic membrane
- Cervical lymph nodes
- Soft, non tender
- No ascites
- Liver: 1cm
- Spleen: not palpable
- Apex: 4th LICS medial to MCL
- ESM at ULSE 2/6
- Pale
- Mildly jaundiced
- No pedal edema
diagnosis

- Retroviral disease on 2nd line HAART
- Anemia
investigations

FBC
- WBC : 4.23 x 10⁹/L
- Hb : 3.2 g/dL
- MCV : 91 fL
- MCHC : 31.6 g/dL
- MCH : 28.8 pg
- Plat : 522 x 10⁹/L
- retic % : 0.18

others
- RP : normal
- LFT : normal
- TSB : normal
- LDH : normal
<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferritin</td>
<td>660 ug/L</td>
<td>(22 – 322)</td>
</tr>
<tr>
<td>Iron</td>
<td>42 umol/L</td>
<td>(11 – 28)</td>
</tr>
<tr>
<td>TIBC</td>
<td>43 umol/L</td>
<td>(52 – 77)</td>
</tr>
<tr>
<td>Folate</td>
<td>14 nmol/L</td>
<td>(> 12)</td>
</tr>
<tr>
<td>B 12</td>
<td>395 pmol/L</td>
<td>(156 – 672)</td>
</tr>
</tbody>
</table>
Infectious serology

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma</td>
<td>-ve</td>
</tr>
<tr>
<td>EBV</td>
<td>IgG +ve</td>
</tr>
<tr>
<td></td>
<td>IgM -ve</td>
</tr>
<tr>
<td>CMV</td>
<td>IgG +ve</td>
</tr>
<tr>
<td></td>
<td>IgM -ve</td>
</tr>
<tr>
<td>Hep Bs Ag</td>
<td>-ve</td>
</tr>
<tr>
<td>Hep C Ab</td>
<td>-ve</td>
</tr>
</tbody>
</table>

Others

- Stool occult blood: -ve
• FBP

severe anemia
normochromic, normocytic cells
thrombocytosis
poor reticulocyte response
Q1 Why is he anemic?

- A : HIV related chronic illness
- B : nutritional cause
- C : drug induced
- D : infection/inflammation
Discussion 1

• A
 Anemia’s common in adv HIV disease with normochromic, normocytic picture:
 -↓erythropoiesis
 -HIV infection of marrow progenitor cells

• B
 usually due to Fe, B12 folate ↓ - poor nutrition or small bowel function.
 FBP: hypochromic, microcytic or macrocytic megaloblastic picture
Discussion 1

• **C**
 ZDV-most common cause (1/3 of pts by 6/52 of Rx) antimicrobial/viral- PCP prophylaxis with TMP/dapsone; gangcylopir

• **D**
 Infections- esp in adv disease
 MAC, TB, histoplasmosis, cryptococcus.
 EBV, hepatitis B, mycoplasma, CMV(colitis-GIT blood loss)
 Malignancies- lymphoma
CLINICAL PROGRESS

<table>
<thead>
<tr>
<th>Date</th>
<th>21/4</th>
<th>22/4</th>
<th>23/4</th>
<th>25/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm.</td>
<td></td>
<td></td>
<td></td>
<td>D/C</td>
</tr>
</tbody>
</table>

- Pallor 2/7
- Cough 4/7

AZT-induced Anemia

- HAART changed to
 - Kaletra
 - Didanosine
 - Lamivudine

Hb
- 3.2
- 5.3
- 5.8
- 9.7
CLINICAL PROGRESS

AZT-induced Anemia

Hb 3.2 5.3 5.8 9.7 5.7

Date 21/4 22/4 23/4 25/4 25/5
Adm. D/C Adm

Pallor 2/7
Cough 4/7

HAART changed to
- Kaletra
- Didanosine
- Lamivudine
CLINICAL PROGRESS

<table>
<thead>
<tr>
<th>Date</th>
<th>Hb</th>
<th>Admission (Adm)</th>
<th>Discharge (D/C)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/4</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/4</td>
<td>5.3</td>
<td></td>
<td></td>
<td>Lady: Pallor 2/7</td>
</tr>
<tr>
<td>23/4</td>
<td>5.8</td>
<td>Adm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/4</td>
<td>9.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/5</td>
<td>5.7</td>
<td></td>
<td></td>
<td>Kaletra - HAART changed to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Kaletra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Didanosine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Lamivudine</td>
</tr>
<tr>
<td>25/5</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26/5</td>
<td>11.8</td>
<td></td>
<td></td>
<td>Cough 2/52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lady: Pallor 4/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Conjunctivitis 2/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Atypical Pneumonia</td>
</tr>
<tr>
<td>16/6</td>
<td>7.4</td>
<td></td>
<td>Adm</td>
<td></td>
</tr>
</tbody>
</table>
CLINICAL PROGRESS

<table>
<thead>
<tr>
<th>Date</th>
<th>21/4</th>
<th>22/4</th>
<th>23/4</th>
<th>24/4</th>
<th>25/4</th>
<th>25/3</th>
<th>25/5</th>
<th>26/5</th>
<th>16/6</th>
<th>17/6</th>
<th>21/6</th>
<th>22/6</th>
<th>5/7</th>
<th>6/7</th>
<th>12/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm.</td>
<td></td>
</tr>
<tr>
<td>D/C</td>
<td></td>
</tr>
<tr>
<td>Adm</td>
<td></td>
</tr>
<tr>
<td>D/C</td>
<td></td>
</tr>
<tr>
<td>Adm</td>
<td></td>
</tr>
</tbody>
</table>

Hb
- 3.2
- 5.3
- 5.8
- 9.7
- 5.7
- 9.1
- 11.8
- 7.4
- 7.2
- 6.7
- 3.4

Notes:
- **Pallor 2/7**
- **Cough 4/7**

HAART changed
- Kaletra
- Didanosine
- Lamivudine

Cough 2/52
- Pallor 4/7
- Conjunctivitis 2/7
- Atypical Pneumonia

Electively admitted for transfusion

Giddy

AZT-induced anaemia
Q2 What further tests?

• A just observe & treat symptomatically

• B investigate for causes not considered before

• C do invasive test/s
Discussion 2

• A
serial post transfusion
Hb’s were improving.
He’ll get better eventually
with expectant care!

• B
Logical!
Hbs aren’t getting better
Blood for C+S
Serology for infections/
inflammations

• C
It’s time to do a
BMA/trephine biopsy!
CLINICAL PROGRESS

Date 21/4 22/4 23/4 25/4 25/3 25/5 26/5 16/6 17/6 21/6 22/6 5/7 6/7 12/7
Hb 3.2 5.3 5.8 9.7 5.7 9.1 11.8 7.4 7.2 6.7 3.4 11.4
Adm. D/C Adm D/C Adm D/C Adm D/C Adm D/C Adm D/C
Pallor 2/7 Cough 4/7
HAART changed
• Kaletra
• Didanosine
• Lamivudine
Cough 2/52 Pallor 4/7 Conjunctivitis 2/7 Atypical Pneumonia
Electively admitted for transfusion
Parvovirus IgM +ve
BMA
IVIG IVIG

Giddy
Further investigations

- Negative results for C+S/ serology for TB/fungal/CMV/EBV/Mycoplasma

- Parvovirus B19 serology: IgM +ve
Bone marrow aspiration

- Erythroid Precursor
- Histiocytes
- Megakaryocytes
- Eosinophils
- Lymphocytes

NORMAL

PURE RED CELL APLASIA
• Erythroid precursor markedly reduced
• Reduced granulopoiesis/ megakaryopoiesis
• No evidence of leukemia/ intra-cytoplasmic organisms
• Increased macrophages (AFB/fungal culture negative)
Final Diagnosis

Chronic Anemia 2^0 to Pure Red Cell Aplasia due to Parvovirus B19 infection in a child with underlying retroviral disease
ANEMIA IN HIV PATIENTS

↓
RBC Production

HIV infection
Drugs
Infection
Infiltration-Neoplasm

↑
RBC Destruction

Hemolysis
Auto Ab
DIVC
Haemophagocytic syn

≠
RBC Production

Nutritional Deficiency
Malabsorption
Pediatric Causes of Acquired Pure Red Cell Aplasia

- **Infections**
 - Parvovirus B19, EBV, Mumps, Hepatitis, Mycoplasma, etc
- **Immunologic**
- **Autoimmune**
 - SLE, JCA
- **Oncologic**
 - Lymphoma, ALL
- **Drugs/Toxins**
 - Antibiotics, Anticonvulsants
Parvovirus B19

- Single stranded DNA
- Virus binds to blood group P antigen
- P antigen is found on
 - Erythroid precursors
 - Megakaryocytes
- discovered by chance in 1975
Parvovirus B19 in immuno-suppressed patients

May be absent
Lack of immunological response
Failure to mount Ab response
Chronic PVB19 infection
Chronic Anemia
PVB19 serology may be negative
DNA PCR more sensitive
IVIG : neutralizing antibody against PVB19
Q3 Parvovirus B19 red cell aplasia treatment modalities in RVD patients?

• A regular symptomatic blood transfusion

• B IVIG infusion

• C HAART
Discussion 3

• A Patient may need serial/regular blood transfusion to tie over the anemic period

• B In resource limited settings, this modality is expensive, patient may require repeated infusions although side-effects are rare. Relapse of anemia can occur(30%)

• C HAART initiation will restore immune function & cause resolution of anemia
FA’s serial hemoglobin parameters (post treatment)

Δx at 1 yr old $^+$

↓Hb/Parvovirus+

ddI/3TC/Kal

Retic count %

0.5 1.0 1.5 2.0 2.5

12 yr

POSHE
FA’s progress

- CD4
 - %: 40, 35, 30, 25, 20, 15, 10, 5, 0
 - nmbr: 800, 700, 600, 500, 400, 300, 200, 100, 0
- Viral load
 - 12 yr

- Δx at 1 yr old
- ↓Hb/Parvovirus+
- ddI/3TC/Kal
- AZT/3TC/Efz
- d4t/3TC→Cmbvr/Kal
- defaulted

- Undetectable limit <20

POSHE
Lesson pearl

• in a child with HIV infection presenting with refractory anemia and poor reticulocyte response;
• pure red cell aplasia secondary to parvovirus B19 infection needs to be considered.