Mechanisms of Neurocognitive Impairment Related to Central Obesity

A. McCutchan, J. He, C. Saunders, S. Letendre, R. Heaton, R. Ellis, D. Franklin, I. Grant, and F. Sattler

HIV Neurobehavioral Research Programs, University of California, San Diego; Department of Management and Strategy, Northwestern University; and Division of Infectious Diseases, University of Southern California
Background

• Central obesity and biomarkers of systemic inflammation correlate with cognitive impairment in both HIV+ and HIV- populations.
• Severity of cognitive impairment is associated with increased waist circumference, but not with BMI, in multivariate modeling of the CHARTER metabolic cohort.*
• The mechanisms for this relationship are unknown, but M1 macrophage-mediated inflammation in visceral adipose tissues could play a role.

Overarching hypothesis

In centrally-obese HIV patients who are well-controlled on ART, macrophages in abdominal fat releases mediators that:

- drive systemic inflammation and CNS immune activation, and thereby
- damage the brain and impair cognition.
Obesity inflames visceral fat

Normal adipose tissue Crown-like structure

M2: “Alternatively Activated”
Anti-inflammatory

M1: “Classically Activated”
Pro-inflammatory
Methods: Patients and Biomarkers

- Cross-sectional study of stored samples from 162 CHARTER patients on ART with HIV plasma VL <1000 copies who were assessed for cognitive impairment (global deficit score = GDS) by the CHARTER NP battery.

- Soluble inflammatory biomarkers were measured in:

 plasma
 - IL-6 - Systemic inflammation
 - sCD163 - Monocyte/macrophage activation
 - sCD14 - Monocyte/macrophage activation by LPS

 CSF
 - sCD40L - M1 macrophage/microglial phenotype
 - sTNFrII - Pro-inflammatory cytokine
 - MCP-1 - Monocyte chemokine
 - ICAM - Vascular adhesion molecule
 - MMP-9 - Basement membrane integrity
Both waist circumference and IL-6 correlate with cognitive impairment (increased GDS).

Central Obesity (WC)

- **Square root of Global Deficit Score** vs **Waist circumference (cm)**

 - Fitted line (with GDS=0)
 - Fitted line (no GDS=0)

<table>
<thead>
<tr>
<th>WC</th>
<th>(n=152)</th>
<th>rho</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.21</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Systemic Inflammation (log IL-6)

- **Square root of Global Deficit Score** vs **log IL-6**

 - Fitted line (with GDS=0)
 - Fitted line (no GDS=0)

<table>
<thead>
<tr>
<th>IL-6</th>
<th>(n=152)</th>
<th>rho</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.17</td>
<td>0.04</td>
</tr>
</tbody>
</table>
WC correlates with GDS only in those with the highest tertile (1/3) of IL-6 levels.

Rho = .07,

P = .65
IL-6 correlates with GDS only for patients in the highest tertile of WC

<table>
<thead>
<tr>
<th></th>
<th>High Tertile of WC</th>
<th>Low Tertile of WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 vs GDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>0.33</td>
<td>-0.10</td>
</tr>
<tr>
<td>P value</td>
<td>0.02</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Difference in slopes: p = 0.03
High IL-6 levels correlated with advancing cognitive impairment (positive GDS slopes) over 3 consecutive annual visits in the highest, but not lowest, IL-6 tertile

<table>
<thead>
<tr>
<th>IL-6 tertile</th>
<th>High</th>
<th>Low</th>
<th>Difference in slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDS slope</td>
<td>Rho = +0.28, P = 0.06</td>
<td>Rho = -0.25, P = 0.11</td>
<td>P = 0.02</td>
</tr>
</tbody>
</table>

Conclusion: Elevated IL-6 appears to mark and/or mediate processes reflecting progression of cognitive impairment.
1) Evaluate complex relationships between predictors, mediators and outcomes

\[
\begin{align*}
\text{Predictor} = WC & \quad \text{Mediator} = \text{Biomarkers} \quad \text{Outcome} = \text{GDS} \\
\beta_1 &= b_1 \\
\beta_2 &= b_2 \\
\beta_3 &= b_3
\end{align*}
\]

2) Models built using regression coefficients

Direct effect: \(\beta_d = \beta_1 \)

Indirect effect: \(\beta_i = \beta_2 \times \beta \)

Total effect: \(\beta = \beta_d + \beta_i = \beta_1 + \beta_2 \times \beta_3 \)

3) Goodness of fit test for the whole model is assessed by p-values with larger p indicating better consistency with data.
Effects of levels of other biomarkers on correlation of IL-6 levels and GDS

<table>
<thead>
<tr>
<th>GDS (SQRT)</th>
<th>High Tertile</th>
<th>Low Tertile</th>
<th>Slope of High vs Low Tertile</th>
</tr>
</thead>
<tbody>
<tr>
<td>sCD163</td>
<td>r = 0.31</td>
<td>r = 0.12</td>
<td>P = 0.70</td>
</tr>
<tr>
<td></td>
<td>(p=0.03)</td>
<td>(p=0.42)</td>
<td></td>
</tr>
<tr>
<td>sCD14</td>
<td>r = 0.10</td>
<td>r = 0.18</td>
<td>P = 0.92</td>
</tr>
<tr>
<td></td>
<td>(p=0.50)</td>
<td>(p=0.22)</td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>r = 0.10</td>
<td>r = 0.18</td>
<td>P = 0.42</td>
</tr>
<tr>
<td></td>
<td>(p=0.52)</td>
<td>(p=0.22)</td>
<td></td>
</tr>
<tr>
<td>MMP-9</td>
<td>r = 0.10</td>
<td>r = 0.34</td>
<td>P = 0.25</td>
</tr>
<tr>
<td></td>
<td>(p=0.51)</td>
<td>(p=0.01)</td>
<td></td>
</tr>
<tr>
<td>sICAM</td>
<td>r = 0.20</td>
<td>r = 0.22</td>
<td>P = 0.53</td>
</tr>
<tr>
<td></td>
<td>(p=0.18)</td>
<td>(p=0.11)</td>
<td></td>
</tr>
<tr>
<td>sCD40L (CSF)</td>
<td>r = 0.60</td>
<td>r = 0.01</td>
<td>P = 0.09</td>
</tr>
<tr>
<td></td>
<td>(p<0.0001)</td>
<td>(p=0.93)</td>
<td></td>
</tr>
<tr>
<td>sTNFRII</td>
<td>r = 0.08</td>
<td>r = 0.22</td>
<td>P = 0.74</td>
</tr>
<tr>
<td></td>
<td>(p=0.57)</td>
<td>(p=0.12)</td>
<td></td>
</tr>
</tbody>
</table>
Pathway Model for subgroup with the highest tertile of CSF sCD40L

High tertile sCD40L sub-group

WC → IL-6 → Global Deficit Score

sCD14

Path Model $P = 0.82$
Conclusions

- Inflammation in central fat leads to systemic inflammation and possibly to microglial activation that may mediate neurodegeneration and cognitive impairment.

- Pathway analysis suggests at least two mechanisms – one IL-6 mediated and the other IL-6 independent.

- Therapy for cognitive impairment related to central obesity might target:
 - Reducing central obesity through weight loss, exercise, tesamorelin (a synthetic growth hormone releasing factor), or bariatric surgery, or
 - Anti-inflammatory drugs (eg, NSAIDs, statins, chloroquine)