At the Intersection of Methamphetamine Use, Aging, and HIV Disease

Steven Paul Woods, Psy.D.
Professor of Psychiatry
Translational Methamphetamine AIDS Research Center (TMARC)
Training in Research on Addictions in Interdisciplinary NeuroAIDS (TRAIN)
University of California San Diego (UCSD)

4th International Workshop on HIV and Aging
Wednesday, October 30, 2013
Does Drug Abuse Play a Role in Neurocognitive Outcomes in Older Persons with HIV Disease?

- HIV, aging, and the brain
- Drug abuse as a comorbidity in older HIV+
 - Methamphetamine (MA) use
- Preliminary data
 - Effects of MA use on neurocognitive and functional outcomes in younger and older HIV+
- Questions to guide future research
HIV and Aging Affect Overlapping Neural Circuits

Becker et al., 2012
HIV and Age Confer Additive Risk of Neurocognitive Impairment

% NP Impaired

Younger HIV- Older HIV- Younger HIV+ Older HIV+

PM Aging Cohort HNRC Cohort

R01 MH073419 (Woods), P30 MH062512 (HNRC, Grant)
Comorbidities are Prevalent in Older HIV+ and May Influence the Age Effects on HAND

Rodriguez-Penney et al., 2013
Substance Disorders Are Prevalent in the Older HIV+ Population

Any Substance Alcohol Illicit Drug

Percent (%)

Any Disorder Abuse Dependence

N01 MH022005 (CHARTER; n=349)
Methamphetamine (MA) is a Common Illicit Drug of Choice in HIV

N01 MH022005 (CHARTER; n = 1,583)
Methamphetamine (MA)

- Highly potent and addictive psychostimulant
- MA use is highly prevalent
 - In the U.S., approximately 12 million individuals age 12 or older (~4.6%) have tried MA at least once in their lives (SAMHSA; 2012)
 - 439,000 (~0.2%) reported MA use in the past month
- MA is associated with numerous adverse public health outcomes (Gonzales et al., 2010)
 - Infectious disease transmission risk
 - Social, economic, and legal problems
 - Increased risk of morbidity and mortality
Chronic MA Use Adversely Affects CNS Structure and Function

Striatum

Neurocognitive Functions

Volkow et al., 2001; Scott et al., 2007
MA Enhances HIV-Associated Neural Injury (interneurons)

Calbindin

Parvalbumin

Chana et al., 2006
MA Use Increases Risk of Neurocognitive Impairment and Poorer Everyday Functioning

\[\text{H-M}^-(n=60) \quad \text{H-M}^+(n=47) \quad \text{H+M}^- (n=50) \quad \text{H+M}^+ (n=43) \]

\[\text{H-M}^-(n=217) \quad \text{H-M}^+(n=237) \quad \text{H+M}^- (n=155) \quad \text{H+M}^+ (n=189) \]

\[*p < 0.01 \]

Rippeth et al., 2004; Blackstone et al., 2013
The Prevalence of Older Adults with MA Use Disorder Histories is Growing

Prevalence of Older HIV+MA+

HNRP NIDA Program Project and TMARC Cohorts

P01 DA012065 (NIDA Program Project); P50 DA026306 (TMARC)
MA Use Decreases With Older Age in HIV

![Graph showing MA use (%)]

- **MA Use (%)**
- **Age (years)**
 - <30
 - 30-39
 - 40-49
 - 50-59
 - 60+

- **Legend**
 - Yellow: Lifetime
 - Purple: Past 90 Days

NO1 MH022005 (CHARTER; n=1,583)
Recovery From MA Neurotoxicity is Possible With Extended Abstinence

Striatal Metabolism

Neurocognitive Impairment

Volkow et al., 2001; Iudicello et al., 2010
A Developmental Model of Aging With HIV and MA
A Preliminary Study: Participants

- 3 groups of ≥ 50 yo participants drawn from a UCSD HNRP R01 on aging and memory
 - Older HIV-/MA- (n=36)
 - Older HIV+/MA- (n=49)
 - Older HIV+/MA+ (n=31)
 • MA+ group met DSM-IV criteria for lifetime MA dependence

- 3 groups of ≤40 yo subjects drawn for comparison purposes
 - Younger HIV-/MA- (n=28)
 - Younger HIV+/MA- (n=34)
 - Younger HIV+/MA+ (n=34)
 • MA+ group met DSM-IV criteria for lifetime MA dependence
Study Exclusions

- Any current alcohol or other illicit substance use diagnoses
 » Positive breathalyzer or urine toxicology screen for illicit drugs on the day of evaluation
- Any lifetime alcohol or illicit substance dependence diagnoses in the non-MA+ groups
- History of confounding major medical (e.g., severe liver disease), neurologic (e.g., TBI, CVA), or psychiatric (e.g., schizophrenia) conditions
- Verbal IQ estimate of < 70
Demographic and Psychiatric Characteristics in Older Groups

<table>
<thead>
<tr>
<th>Demographic Characteristics</th>
<th>H-M- (n=36)</th>
<th>H+M- (n=49)</th>
<th>H+M+ (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)*</td>
<td>57.1 (5.0)</td>
<td>57.3 (5.9)</td>
<td>53.9 (3.2)</td>
</tr>
<tr>
<td>Education (years)*</td>
<td>15.0 (2.6)</td>
<td>15.2 (2.3)</td>
<td>13.7 (2.4)</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>69.4%</td>
<td>85.7%</td>
<td>80.7%</td>
</tr>
<tr>
<td>Ethnicity (% Caucasian)</td>
<td>66.7%</td>
<td>81.6%</td>
<td>71.0%</td>
</tr>
<tr>
<td>Estimated Premorbid VIQ*</td>
<td>106.3 (9.6)</td>
<td>105.8 (10.5)</td>
<td>100.2 (10.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Psychiatric Characteristics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LT Major Depressive Disorder (%)*</td>
<td>33.3%</td>
<td>51.0%</td>
<td>71.0%</td>
</tr>
<tr>
<td>LT Generalized Anxiety Disorder (%)*</td>
<td>5.6%</td>
<td>16.3%</td>
<td>38.7%</td>
</tr>
<tr>
<td>LT Alcohol Abuse (%)</td>
<td>25.0%</td>
<td>34.6%</td>
<td>22.5%</td>
</tr>
<tr>
<td>LT Non-MA Substance Abuse (%)*</td>
<td>13.9%</td>
<td>26.5%</td>
<td>64.5%</td>
</tr>
</tbody>
</table>

*p < 0.05
Substance Dependence Characteristics in Younger and Older HIV+ Groups

<table>
<thead>
<tr>
<th>MA Dependence Parameters</th>
<th>Younger H+M+ (n=34)</th>
<th>Older H+M+ (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis onset (years)*</td>
<td>24.1 (6.5)</td>
<td>34.7 (10.9)</td>
</tr>
<tr>
<td>Age at most recent diagnosis (years)*</td>
<td>31.3 (5.3)</td>
<td>45.1 (10.6)</td>
</tr>
<tr>
<td>Duration of diagnosis (years)</td>
<td>7.17 (7.0)</td>
<td>10.3 (9.9)</td>
</tr>
<tr>
<td>Recency of diagnosis (years)*</td>
<td>2.6 (3.1)</td>
<td>8.8 (10.2)</td>
</tr>
</tbody>
</table>

Lifetime Other Substance Disorders

<table>
<thead>
<tr>
<th>Substance Dependence (%)</th>
<th>Younger H+M+</th>
<th>Older H+M+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol Dependence (%)*</td>
<td>67.7%</td>
<td>41.9%</td>
</tr>
<tr>
<td>Marijuana Dependence (%)</td>
<td>38.2%</td>
<td>22.6%</td>
</tr>
<tr>
<td>Cocaine Dependence (%)+</td>
<td>23.5%</td>
<td>45.2%</td>
</tr>
<tr>
<td>Opioid Dependence (%)</td>
<td>20.6%</td>
<td>12.9%</td>
</tr>
</tbody>
</table>

*p < 0.05; +p < 0.10
Medical and HIV Disease Characteristics in Older Groups

<table>
<thead>
<tr>
<th>Medical Characteristics</th>
<th>H-M- (n=36)</th>
<th>H+M- (n=49)</th>
<th>H+M+ (n=31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comorbidity Rating (% cont)*</td>
<td>16.7%</td>
<td>46.9%</td>
<td>32.3%</td>
</tr>
<tr>
<td>Hepatitis C (% seropositive)*</td>
<td>2.8%</td>
<td>26.5%</td>
<td>41.9%</td>
</tr>
<tr>
<td>Rx Drug U-tox Positive (%)</td>
<td>13.9%</td>
<td>31.3%</td>
<td>12.9%</td>
</tr>
<tr>
<td>HIV Disease Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Infection (years)*</td>
<td>-----</td>
<td>20.5 (15.2, 23.8)</td>
<td>15.9 (4.6, 21.4)</td>
</tr>
<tr>
<td>Age at HIV Diagnosis (years)</td>
<td>-----</td>
<td>38.6 (32.5, 44.4)</td>
<td>37.8 (31.2, 46.6)</td>
</tr>
<tr>
<td>AIDS Status (% AIDS)</td>
<td>-----</td>
<td>63.3%</td>
<td>67.7%</td>
</tr>
<tr>
<td>Nadir CD4 (cells/μL)</td>
<td>-----</td>
<td>170.0 (50.0, 260.0)</td>
<td>120.0 (54.0, 236.0)</td>
</tr>
<tr>
<td>Current CD4 (cells/μL)*</td>
<td>-----</td>
<td>584.0 (426.0, 818.5)</td>
<td>458.5 (325.0, 595.5)</td>
</tr>
<tr>
<td>cART Status (% on)</td>
<td>-----</td>
<td>89.8% (n=44)</td>
<td>93.6% (n=29)</td>
</tr>
<tr>
<td>Plasma VL (% det on cART)</td>
<td>-----</td>
<td>20.5%</td>
<td>10.3%</td>
</tr>
<tr>
<td>CSF VL (% det on cART)</td>
<td>-----</td>
<td>9.4%</td>
<td>20.8%</td>
</tr>
</tbody>
</table>

*p < 0.05
Neurocognitive and Functional Assessment

<table>
<thead>
<tr>
<th>Neurocognitive Domain</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning & Memory</td>
<td>WMS-III Logical Memory (Immediate & Delayed Recall); CVLT-II (Learning Trials 1-5, Long Delay Free Recall)</td>
</tr>
<tr>
<td>Attention</td>
<td>WAIS-III Digit Span; CVLT-II (Trial 1)</td>
</tr>
<tr>
<td>Executive Functions</td>
<td>Drexel Tower of London (Total Moves); Action Fluency; Trail Making Test Part B</td>
</tr>
<tr>
<td>Information Processing Speed</td>
<td>Drexel Tower of London (Total Execution Time); Trail Making Test Part A</td>
</tr>
<tr>
<td>Motor</td>
<td>Grooved Pegboard (Dominant and Non-dominant hands)</td>
</tr>
</tbody>
</table>

Daily Functioning

<table>
<thead>
<tr>
<th>Daily Functioning</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities of Daily Living</td>
<td>Lawton & Brody (1969) Basic and Instrumental Activities of Daily Living (BADLs & IADLs)</td>
</tr>
<tr>
<td>Everyday Cognitive Symptoms</td>
<td>Profile of Mood States (Confusion/Bewilderment Scale)</td>
</tr>
<tr>
<td>Employment</td>
<td>Clinical Interview (employed/unemployed/disabled)</td>
</tr>
</tbody>
</table>
Neurocognitive Findings

- HIV
- MA
- Aging
MA is Associated with Poorer Global Neurocognitive Functioning in Older but not Younger HIV+ Persons

Older (≥ 50 years old) vs. Younger (≤ 40 years old)
Earlier Onset of MA Dependence is Associated with Worse Neurocognitive Functioning in Older HIV+MA+

$\rho < 0.05$

$r = 0.40$
(NS in Y+M+)
Specific Neurocognitive Domains Are Affected by MA in Older HIV+

![Graph showing T-Score for different domains such as Learning, Memory, Attention, Executive Functions, Speed, and Motor Skills.](image)

Domain T-Score

H-M- (n=36)

H+M- (n=49)

H+M+ (n=31)

*\(*p < 0.05; **p < 0.01 \)*
Shallower Verbal Learning Slope Among Older HIV+ MA Users

![Graph showing CVLT-II Z-scores for different conditions and delays.](image)
Everyday Functioning Findings

- HIV
- MA
- Aging
MA Adversely Impacts Daily Functioning in Older but not Younger HIV+

p < 0.05; *p < 0.10
MA Affects a Broad Range of Daily Functioning Outcomes in Older HIV+

p < 0.05; *p < 0.10
Higher Prevalence of Syndromic Neurocognitive Impairment (NCI)a Among Older HIV+ MA Users

aSyndromic NCI = NCI + Functional Dependence

*p < 0.05
Summary

- Prior MA use affects neurocognitive and everyday functioning in older, but not younger HIV+ adults
 - MA effects in O+ were independent of cofactors
 - Between groups (e.g., demographics, depression)
 - Within O+ (e.g., HCV, other substance use disorders)

- Specific neurocognitive domains were vulnerable
 - Memory (acquisition), auditory attention, and fine-motor skills

- Broad range of everyday functioning outcomes were affected in O+ former MA users
 - Basic and instrumental ADLs, cognitive symptoms, employment
Possible Mechanisms

- "Legacy" effect of MA-associated neurotoxicity
 » Incomplete neural recovery in O+?
 » Immunovirologic factors?
 • Lower CD4, shorter EDI
 • Poorer virologic control
 • Hepatitis C co-infection
 » Vulnerability to age-related co-factors?
 • Vascular, metabolic, inflammation
 » Neurodegeneration?

NCI and Abstinence from MA

Cattie et al., 2013
A Developmental Model of Aging With HIV and MA
The Sixth Decade May Bring Even More Neurocognitive Complications for Older HIV+ Substance Users

Gongvatana et al., in prep
Future Directions

- Longitudinal studies with older MA seronegative comparisons are needed
 - Animal models?
- Role of MA (and other SUD) use parameters
 - Active users, density, route, etc.
- Other relevant neurocognitive and real-world functions
 - Decision-making, social cognition, prospective memory
 - Health literacy, cART adherence, HIV transmission risk, quality of life
- Neural substrates
 - Prefrontal and medial temporal systems
- Biomarkers of neural injury common to HIV, MA, and aging
 - Inflammation, vasculopathy
Older HIV+ MA Users May Benefit from Cognitive Neurorehabilitation

- MA affects cognitive strategy use and effectiveness in older HIV+
- Possible strategies
 - Prophylactic
 - Stimulation
 - Compensatory
 - Encourage and assist mnemonics
 - Break information down into manageable chunks

Woods et al., 2010 *p<.05
Acknowledgements

- Jennifer E. Iudicello, Ph.D.
- Other Contributors
 - Erin E. Morgan, Ph.D.
 - Assawin Gongvatana, Ph.D.
 - Scott Letendre, M.D.
 - J. Hampton Atkinson, M.D.
 - Erica Weber, M.S.
 - Mark W. Bondi, Ph.D.
 - Igor Grant, M.D.
- Aging PM R01 Staff
 - Marizela V. Cameron
 - P. Katie Riggs
- NIH Grant Support
 - R01 MH073419 (SPW)
 - T32 DA031098 (SPW)
 - P50 DA026306 (IG)
 - P30 MH062512 (RKH)
 - N01 MH022005 (IG)
 - L30 DA032120 (EEM)
 - L30 DA034362 (JEI)