Pharmacokinetic interaction between boceprevir and etravirine in HIV/HCV seronegative volunteers

Kyle P. Hammond, Pamela Wolfe, James R. Burton, Julie A. Predhomme, Christine M. Ellis, Michelle L. Ray, Lane R. Bushman, Jennifer J. Kiser
University of Colorado Denver
kyle.hammond@ucdenver.edu
7th International Workshop on Clinical Pharmacology of Hepatitis Therapy
Cambridge, MA
June 27-28, 2012
Background

- In the United States, approximately 30 percent of persons infected with the human immunodeficiency virus (HIV) are also coinfected with the hepatitis-C virus (HCV).

- Standard of care, prior to 2011, included pegylated interferon and ribavirin.

- The addition of NS3/4A protease inhibitors to pegylated interferon and ribavirin (triple therapy) has transformed HCV treatment.

- Studies have shown improved SVR (cure) rates with triple therapy.

- Interactions between the new HCV medications and HIV medications have not been fully evaluated.

Background

• Boceprevir (NS3/4A protease inhibitor) is partly metabolized by **CYP3A4/5** and is a strong **inhibitor** of **CYP3A4/5**.\(^2\)

• Etravirine is a substrate for **CYP3A**, 2C9, and/or 2C19. It is an inducer of **CYP3A** and an inhibitor of 2C9 and/or 2C19.\(^3\)

Hypotheses

- Boceprevir concentrations will be decreased in the presence of etravirine.
 - Boceprevir C_{trough} is **reduced** an average of 44% by efavirenz (CYP3A inducer).4

- Etravirine concentrations will be increased in the presence of boceprevir.
 - Boceprevir **increases** midazolam (CYP3A substrate) AUC by 5.3-fold.4

4 Kasserra CH et al. 18th Conference on Retroviruses and Opportunistic Infections. Boston, MA2011.
Objectives

• Primary objective: determine the bioequivalence of boceprevir and etravirine AUC, C_{max}, and C_{trough} used alone and in combination in HIV/HCV seronegative healthy volunteers.

• Secondary objectives included: observed changes in other PK parameters and assessments of the safety and tolerability of the two drugs when used alone and in combination.
Methods

Enrolled Subjects (N=20):
- Healthy HIV-1/HCV seronegative men and non-pregnant women between 18 and 60 years of age were eligible.

Randomized Crossover Design to receive three sequences:
- Sequences included:
 - Boceprevir: 800 mg every 8 hours
 - Etravirine: 200 mg every 12 hours
 - Boceprevir + Etravirine: same dosing regimen

• 11-14 days of therapy
• ≥ 14 day “washout” between sequences

Pharmacokinetic Analysis:
- Intensive 8- or 12-hour PK analysis
- Standardized moderate fat breakfast (600-700kcal; 45% carbohydrates, 15% protein, 40% fat) before drug administration.
- Observed dosing.
Analytical and PK Methods

- **Bioanalyses**
 - Validated HPLC with MS/MS detection for boceprevir with LLQ=5ng/mL.
 - Validated HPLC/UV assay for etravirine with LLQ=20ng/mL

- **Pharmacokinetic Methods**
 - Etravirine and boceprevir pharmacokinetics determined with non-compartmental methods (WinNonLin v5.3)
Statistical Methods

- Geometric mean ratios (GMR) and 90% CI for the combination sequence vs. alone were evaluated using two one-sided t tests.

- The hypothesis of equivalence ($\text{AUC}_{(0,\tau)}, \ C_{\text{max}}, C_8$ for boceprevir and C_{min} for etravirine) was rejected if the lower confidence limit was <0.8 or the upper confidence limit was >1.25.

- Other PK parameters were compared using paired t-tests.
Results

- Twenty-six subjects enrolled with 20 subjects completing all three sequences.

- Of the 6 subjects not included in PK analyses: 4 due to rashes from etravirine, 1 due to CNS effects, and 1 due to a viral illness.

<table>
<thead>
<tr>
<th>Demographic Information</th>
<th>Completed Subjects, N=20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs): median, range</td>
<td>36 (18-59)</td>
</tr>
<tr>
<td>Weight (kg): median, range</td>
<td>73 (56-91)</td>
</tr>
<tr>
<td>Females, n(%)</td>
<td>10 (50%)</td>
</tr>
<tr>
<td>Caucasians, n(%)</td>
<td>14 (70%)</td>
</tr>
<tr>
<td>African Americans, n(%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>Hispanics, n(%)</td>
<td>3 (15%)</td>
</tr>
</tbody>
</table>
Etravirine Results Differ From Hypothesis

<table>
<thead>
<tr>
<th></th>
<th>Mean (CV %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC(_{(0,T)}) (ng*h/mL)</td>
</tr>
<tr>
<td>ETV alone</td>
<td>7698 (33%)</td>
</tr>
<tr>
<td>ETV + BOC</td>
<td>5957 (54%)</td>
</tr>
<tr>
<td>GMR (ETV + BOC vs.</td>
<td>0.77</td>
</tr>
<tr>
<td>ETV alone)</td>
<td></td>
</tr>
<tr>
<td>Percent change</td>
<td>↓ 23%</td>
</tr>
<tr>
<td>90% CI</td>
<td>0.66-0.91</td>
</tr>
</tbody>
</table>

- CL/F and V/F GMR were 1.29 (p=0.112) and 1.33 (p=0.0315), respectively.
- T1/2 not statistically different p=0.738
Boceprevir Results Differ From Hypothesis

<table>
<thead>
<tr>
<th></th>
<th>Mean (CV%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC(_{(0,\tau)}) (ng*h/mL)</td>
</tr>
<tr>
<td>BOC</td>
<td>4601 (47%)</td>
</tr>
<tr>
<td>BOC + ETV</td>
<td>5047 (30%)</td>
</tr>
<tr>
<td>GMR (BOC + ETV vs. BOC)</td>
<td>1.10</td>
</tr>
<tr>
<td>Percent Change</td>
<td>↑ 10%</td>
</tr>
<tr>
<td>90% CI</td>
<td>0.94-1.28</td>
</tr>
</tbody>
</table>

- CL/F and V/F GMR were 0.91 (p=0.3161) and 0.84 (p=0.3276)
- Difference in t1/2 was not statistically different as well p=0.6771
Safety and Tolerability

All clinical and laboratory adverse events observed in the study were graded as mild or moderate.

<table>
<thead>
<tr>
<th>Adverse Events Observed</th>
<th>Boceprevir Alone (n=21)</th>
<th>Etravirine Alone (n=22)</th>
<th>Combination (n=25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Common, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altered Taste</td>
<td>18 (86%)</td>
<td>-</td>
<td>16 (64%)</td>
</tr>
<tr>
<td>Frequency >10%, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>4 (19%)</td>
<td>5 (23%)</td>
<td>4 (16%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3 (14%)</td>
<td>1 (5%)</td>
<td>3 (12%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>4 (19%)</td>
<td>-</td>
<td>3 (12%)</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>4 (19%)</td>
<td>-</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>Rash</td>
<td>2 (9%)</td>
<td></td>
<td>4 (16%)</td>
</tr>
</tbody>
</table>
Possible Mechanism

- Possible mechanisms:
 - Reduction in bioavailability – reduced etravirine solubility and/or induction of efflux transporters (i.e. P-gp, MRP, BCRP)
 - Hepatic enzyme induction – Boceprevir induction of CYP3A, 2C9, and/or 2C19
 - Protein binding displacement – Displacement increasing clearance of etravirine
 - Etravirine is 99.9% protein bound.\(^3\)
 - Similar interaction observed between telaprevir and methadone.
 - Total concentrations of methadone’s AUC, \(C_{\text{max}}\), and \(C_{\text{min}}\) were reduced 29%, 29%, and 31%, respectively.\(^5\) Unbound methadone concentrations unchanged.

5. R. van Heeswijk AV et al. EASL The International Liver Congress 2011. Berlin, Germany 2011
Clinical Relevance

- Clinically relevant limit = 0.5, 2.0\(^6,7\)
- Study eliminated many confounding factors.
- Coadministration of etravirine with boceprevir decreased etravirine’s AUC 23%, \(C_{\text{max}}\) 24%, and \(C_{\text{min}}\) by 29%.

<table>
<thead>
<tr>
<th>Other Antiretroviral’s Effect on Etravirine(^8,9)</th>
<th>Percent change in ETV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darunavir/ritonavir 600/100 mg BID</td>
<td>↓ 37%</td>
</tr>
<tr>
<td>Tenofovir 300 mg QD</td>
<td>↓ 19%</td>
</tr>
</tbody>
</table>

Conclusions

• Boceprevir concentrations were not altered to a clinically relevant level by etravirine.

• Etravirine concentrations could possibly reach clinical relevance in a clinical setting.

• Further research needed to evaluate multiple drug combination interactions in coinfected population, as well as research to elucidate the mechanism behind the interaction observed in this study.
Acknowledgements

- This study was supported by a research grant from the Investigator-Initiated Studies Program of Merck Sharpe & Dohme Corp. to J. Kiser.

- The CAVP lab for all of their great work.

- The study participants.

- The nurses and staff of the University of Colorado Hospital General Clinical Research Center.