Transmitted HIV-1 is an R5 T-cell tropic virus while macrophage-tropic viruses are evolutionary dead ends with the ability to use low levels of CD4

Sarah Joseph

Kathryn T. Arrildt, Lihua Ping, Adrienne E. Swanstrom, James A. Hoxie and Ronald Swanstrom

Transmission Meeting 2012
Sample population

Individuals from Malawi and South Africa heterosexually infected with Subtype C HIV-1

Analyzed entry phenotypes of env clones generated from:

• 34 acutely infected subjects = transmitted / founder viruses

• 32 chronically infected subjects = chronic control viruses
Methods that have led to the mischaracterization of viruses as macrophage-tropic

1. Definitional / dogma

T cell-tropic HIV = CXCR4 using

Macrophage-tropic HIV = CCR5 using
Methods that have led to the mischaracterization of viruses as macrophage-tropic

1. Definitional / dogma

T cell-tropic HIV = CXCR4 using

Macrophage-tropic HIV = CCR5 using

2. Experimental

Monocyte derived macrophage (MDMs) differ greatly in their ability to support HIV replication. Most viruses are capable of some replication in macrophage.
We need a new method for assessing macrophage-tropism!
Macrophage tropism and CD4 usage

![Graphs showing infectivity (x 1,000 RLU) for different donors.](image-url)
Differential expression of CD4 has a **HUGE** effect on how susceptible macrophage are to infection.

Macrophage tropism and CD4 usage

Graphs showing infectivity

- **Donor 2** (15k CD4/cell)
- **Donor 3** (17k CD4/cell)
- **Donor 4** (14k CD4/cell)
- **Donor 5** (16k CD4/cell)
Macrophage tropism and CD4 usage

Differential expression of CD4 has a **HUGE** effect on how susceptible macrophage are to infection

\[r^2 = 0.995 \]
Macrophage tropism and CD4 usage

Differential expression of CD4 has a **HUGE** effect on how susceptible macrophage are to infection

\[
\begin{align*}
\text{Relative infectivity} & \\
\text{Mean CD4 receptors per cell} & \text{Donor 2} \quad \text{Donor 3} \quad \text{Donor 4} \quad \text{Donor 5}
\end{align*}
\]

\[r^2 = 0.995\]
Affinofile Cells: Inducible CD4

Macrophage tropism and CD4 usage

Titration of CD4 Density in Affinofile Cells

CD4 Molecules per Cell vs. Doxy (ng/ml)
Macrophage tropism and CD4 usage

A: moderate to no decay - Macrophage tropic virus in CSF

B: rapid decay - T cell tropic virus in CSF
Macrophage tropism and CD4 usage

Infection of Affinofile cells is an accurate assay for macrophage tropism

A: moderate to no decay - Macrophage tropic virus in CSF

B: rapid decay - T cell tropic virus in CSF
Macrophage tropism and CD4 usage

Affinofile cells
Benhur Lee, UCLA

Percent infection

CD4 receptors / cell (x1000)
Transmitted/founder viruses are not macrophage-tropic and do not differ from chronically-derived viruses in their CD4 usage.
CCR5 usage

Affinoile cells
Benhur Lee, UCLA

Percent infection

Maraviroc concentration μM

Acutes
Chronics
CCR5 usage

High CCR5

- Sensitive
- Maraviroc Resistant

p-value = 0.01
Transmitted viruses are more likely to utilizing the maraviroc sensitive conformation of CCR5
Transmitted viruses are under-glycosylated relative to the viruses found in chronically infected subjects.
Higher glycosylation is correlated with a maraviroc resistant form of CCR5.
Conclusions

In heterosexual transmission in the setting of Subtype C HIV-1 the transmitted virus:

1. Requires high levels of CD4 to enter cells identifying T cells as its target cell
Potential target cells in the genital mucosa

- T cells: 450 CD4 ABS/μm²
- Macrophage: 20 CD4 ABS/μm²
- Dendritic cells: 15 CD4 ABS/μm²
Potential target cells in the genital mucosa:

- **T cells**: 450 CD4 ABS/μm²
- **Macrophage**: 20 CD4 ABS/μm²
- **Dendritic cells**: 15 CD4 ABS/μm²

CD4 levels are too low.
Conclusions

In heterosexual transmission in the setting of Subtype C HIV-1 the transmitted virus:

1. Requires high levels of CD4 to enter cells identifying T cells as its target cell

2. Is enriched relative to chronic viruses to use a maraviroc sensitive conformation of CCR5

3. Has reduced glycosylation which is associated with the ability to use a conformation of CCR5 that is sensitive to maraviroc

4. Macrophage-tropic viruses are rare and are evolutionary dead-ends in each host where they evolve
Acknowledgments

UNC Chapel Hill
- Sarah Joseph
- Jeff Anderson (BMS)
- Li-Hua Ping
- Gretja Schnell (U.Wash.)
- Kate Arrildt
- Laura Kincr
- Leslie Arney (U. Mich.)
- Cass Jabara
- Jessica Keys
- Suany Ojeda
- Myron Cohen/CHAVI 001 Clinical Core Team
- Joe Eron and the UNC Primary Infection Group
- Susan Fiscus and lab
- Malawi colleagues:
 - Clement Mapanje
 - Peter Kazembe
- Irving Hoffman
- Haito Chu

University of Alabama/U Penn
- Beatrice Hahn
- George Shaw
- Brandon Keele
- Jesus Salazar-Gonzalez
- Maria Salazar

University of Cape Town
- Carolyn Williamson
- Melissa-Rose Abrahams

Los Alamos National Laboratory
- Bette Korber
- Ming Zhang

UCSF
- Dick Price
- Serena Spudich (Yale)

UCLA
- Benhur Lee

Duke University
- David Montefiori
- Feng Gao
The transmitted virus is R5 T cell-tropic!