PK/PD of first-line anti-tuberculosis drugs and concentrations associated with optimal efficacy in combination therapy regimens in adult patients

Jotam G. Pasipanodya1*, Helen McIlneron2, André Burger3, Peter A. Wash3, Peter Smith2, Tawanda Gumbo1,4

1Office of Global Health, Southwestern Medical Center, 2Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory, South Africa. 3Brewelskloof Hospital, Worcester, South Africa, and 4Department of Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
Background: Hollow Fibers Studies-1

• PK-PD studies performed in the past by many researchers have suggested that **microbiological kill**, **post antibiotic effect** as well as **resistance suppression** of anti-TB regimens, including INH, RIF and PZA are linked to either AUC or Peak concentrations.

• Our group performed experiments of anti-TB drugs in monotherapy and in multiple drug combinations in the hollow-fiber
Pharmacokinetic Variability

INH, RIF & PZA

• PK variability significantly contributes to clinical outcomes
 – Only very high rates of missed doses (~60%) led to failure
 – No Acquired Drug Resistance (ADR) emerged because of missed doses
• Monte Carlo Simulations suggested MDR (0.68%) possible by 8 weeks despite 100% DOT
 – Attributable to PK variability

Based on the HFS model; DOT is a very poor surrogate marker and attempt to counter-measure PK variability and its effects
Thus *PK variability* is the *most proximate factor associated with failure of TB therapy and possibly responsible for emergence of drug resistance, including MDR.*
To identify drug concentration thresholds predictive of clinical outcomes in adult TB patients treated with multiple anti-TB drug combination therapy in the clinic
– used nonparametric machine-learning methods
– examined 2-month & long-term outcomes
Methods-1: Study setting

Western Cape, SA

- pop 5.2 M; heterogeneous ~ race/ethnic since 1652 AD
- Diverse ancestry
 - Cape Coloureds (50%)
 - Black/Africans: Bantu (30%)
 - Whites-Afrikaans (18%)
 - Asians/Indians/Malay (1%)
- TB rates
 - 917 per 100000 (all cases)
 - >9000 cases – MDR cases
 - The Brewelskloof hospital
Methods-1: study design

Clinical study and PK sampling: 142 patients

Compartmental PK analysis for each patients:
- RIF, INH & PZA

CART analysis:
- Identify, rank and select predictors
- Identify drug thresholds

INTERVENTION
Computer-aided clinical trial simulation
- 50,000 patients: Bayesian vs Standard

Cost Effectiveness Analysis
- DALYs
Methods-2 Outcomes, PKs & CART

• **Outcomes**
 – Patient followed-up for up to two years:
 • *microbiological failure; 2-month*
 • *relapse,
 • *Death*

• **Pharmacokinetic (PK) Analysis**
 – Sampling at 9 different time points
 – Compartimental PK
 • INH, RIF & PZA
 • maximum-likelihood expectation maximization algorithm
 – Selection of # of compartments: AKAIKE Information Criteria
Results-1: Patient Characteristics; n=142

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Estimate or Median</th>
<th>Range or %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>78</td>
<td>55 %</td>
</tr>
<tr>
<td>Race/ethnicity: Mixed</td>
<td>127</td>
<td>89 %</td>
</tr>
<tr>
<td>Black</td>
<td>15</td>
<td>11%</td>
</tr>
<tr>
<td>Weight (kg): Median</td>
<td>46.00</td>
<td>28.00 – 85.50</td>
</tr>
<tr>
<td>Weight change with 2 month therapy (Median)</td>
<td>8.37</td>
<td>-11.55 – 36.84</td>
</tr>
<tr>
<td>Dose and range in mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIF</td>
<td>10.90</td>
<td>7.02 – 15.79</td>
</tr>
<tr>
<td>INH</td>
<td>6.52</td>
<td>3.51 – 10.53</td>
</tr>
<tr>
<td>PZA</td>
<td>35.71</td>
<td>19.69 – 52.62</td>
</tr>
<tr>
<td>EMB</td>
<td>24.62</td>
<td>12.88 – 34.12</td>
</tr>
<tr>
<td>Received Streptomycin</td>
<td>68</td>
<td>47.89%</td>
</tr>
<tr>
<td>Prior TB therapy</td>
<td>91</td>
<td>64%</td>
</tr>
<tr>
<td>Elevated Liver function test</td>
<td>8</td>
<td>6%</td>
</tr>
</tbody>
</table>
Results-2: Variability of RIF, INH & PZA; AUC and C_{max} concentrations

8/09/2012 5th International Workshop on Clinical Pharmacology of TB drugs
CART: *nonparametric* learning approach

- Distribution free, supervised learning with pattern recognition capabilities & clinically intuitive outputs:
 - A Data driven technique (not hypothesis)
 - Identify, rank and select most important clinical predictors including PK parameters; weight, age, gender, and HIV status
 - Identify drug conc. thresholds predictive of outcomes
 - 10 fold cross-validation (142 patients)
 - Optimal tree chosen based on relative costs and parsimony
 - Hybrid modeling: additional frequentist methods used
Results-3: Sputum culture; 2nd month

Study sample = 142 patients
- positive 15 (14%)
- negative 127 (89%)

PZA peak ≤ 58.3: 99 pts
- pos 14 (14%)
- neg 85 (86%)

PZA peak >58.3: 43 pts
- pos 1 (2%)
- neg 42 (98%)

RIF peak >6.6: 29 pts
- pos 1 (3%)
- neg 28 (97%)

INH peak ≤ 8.8: 57 pts
- pos 13 (23%)
- neg 44 (77%)

INH peak >8.8: 13 pts
- pos 0 (0%)
- neg 13 (100%)
Results-4: Long-term Outcome

Study sample = 142 pts
- good: 107 (75%)
- poor: 35 (25%)

PZA AUC > 363: 113 pts
- good: 91 (80%)
- poor: 22 (20%)

RIF AUC > 13: 40 pts
- good: 27 (67%)
- poor: 13 (33%)

RIF AUC ≥ 13: 73 pts
- good: 64 (88%)
- poor: 9 (12%)

PZA AUC ≤ 363: 29 pts
- good: 16 (55%)
- poor: 13 (45%)

INH AUC > 52: 65 pts
- good: 60 (92%)
- poor: 5 (8%)

INH AUC < 52: 8 pts
- good: 4 (50%)
- poor: 4 (50%)

INH AUC < 52: 10 pts
- good: 3 (30%)
- poor: 7 (70%)

INH AUC > 52: 30 pts
- good: 24 (80%)
- poor: 6 (20%)
Results-5: PK Parameters in patients who developed Acquired Drug Resistance

<table>
<thead>
<tr>
<th>Patient</th>
<th>RIF Peak (mg/l)</th>
<th>RIF AUC (mg*h/L)</th>
<th>INH Peak (mg/l)</th>
<th>INH AUC (mg*h/L)</th>
<th>Treatment period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.62</td>
<td>10.83</td>
<td>0.88</td>
<td>25.36</td>
<td>First 2 months</td>
</tr>
<tr>
<td>2</td>
<td>0.81</td>
<td>7.31</td>
<td>8.6</td>
<td>30.37</td>
<td>Microbiologic failure</td>
</tr>
<tr>
<td>3</td>
<td>1.64</td>
<td>7.24</td>
<td>8.6</td>
<td>32.56</td>
<td>Relapse</td>
</tr>
</tbody>
</table>

AUC=0 – 24 hour area under the concentration time curve
Discussion-1

• 91% of patients with poor outcomes had at least one drug with low AUC

• All ADR had low concentrations of at least one drug

• Low PZA c_{max} and PZA A_{UC} accounted for 91% of all patients that were still positive at 2 months and 37% with poor long-term outcomes, respectively.
Discussion-2

2 Month Outcomes (sputum culture conversion)
1. PZA cmax
2. RIF cmax
3. INH cmax

Long-term Outcomes (failure, relapse & death)
1. PZA \text{ AUC}
2. RIF \text{ AUC}
3. INH \text{ AUC}
Conclusions

• **Pharmacokinetic variability** drives anti-tuberculosis treatment *failure* and *ADR* in patients on a first line anti-tuberculosis regimen.

• As predicted by **Hollow Fiber Systems** model; the PK/PD drivers are AUC and C_{max}.

• Drug concentrations are good early “**biomarkers**” of long-term outcome in patients treated with multi-drug regimens. We propose that they be used for patient care.
ACKNOWLEDGEMENTS

1. Patients from Western Cape Province, RSA

2. University of Cape Town, Department of Clinical Pharmacology
 - Dr Mcilleron
 - Dr Peter Smith

3. Brewelskloof hospital
 - Dr Peter Wash
 - Dr André Burger

4. UT Southwestern, Office of Global Health
 - Dr Tawanda Gumbo
 - Dr Jotam G. Pasipanodya
References

8/09/2012