Evaluation of co-trimoxazole in treatment of multidrug-resistant tuberculosis

N. Alsaad1, R. v Altena2, \textbf{A.D. Pranger}1, D. van Soolingen4, W.C.M. de Lange2, T.S. van der Werf4, J.G.W. Kosterink1, J.W.C Alffenaar1

University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
1. Dept of Hospital and Clinical Pharmacy.
2. Tuberculosis Center Beatrixoord, Haren, The Netherlands.
4. Dept. of Internal Medicine and Pulmonary Disease and Tuberculosis and 3. National Tuberculosis Reference Laboratory, Bilthoven, The Netherlands
Background

• Co-trimoxazole (SXT):1-2
 – Sulfamethoxazole (SMX) and Trimethoprim (TMP) (ratio 1:5)
 – Old, inexpensive, well tolerated, not registered for TB
 • ie. urinary tract infections, otitis media, chronic bronchitis
 – Time-dependent killing, AUC/MIC

• SMX
 – \textit{In vitro} activity against \textit{M. tuberculosis}3-5
 – Lack of PK / PD and safety profile in TB patients3,4

1DeAngelis \textit{et al}; TDM 1990, 2Nightingale \textit{et al}; Marcel Dekker Inc 2003, 3Forgacs \textit{et al}; AAC 2009, 4Huang \textit{et al}; JAC 2012, 5Ong \textit{et al}; AAC 2010
Study design

• Retrospective study

• 1st January 2006 – 1st July 2012
 – MDR-TB patients
 (1) Drug susceptibility testing (DST) for SXT
 (2) SXT as part of their TB regimen
 – Tuberculosis Center Beatrixoord, Haren, The Netherlands

• To explore SXT use as part of MDR-TB regimen
 – PK / PD parameters
 – Safety
Data collection

• Demographic data:
 – age, sex, weight, length, ethnicity,

• Medical data:
 – co-morbidity, type of diagnosis, localisation of TB, resistance pattern, medical history, dose and duration of TB co-medication
 – SXT:
 • Dose and duration of treatment
 • MIC for SMX (MIC of SXT, TMP: SMX ratio 1:19)
 • SXT-induced adverse effects
 • Pharmacokinetic data
Methods: PK / PD

• Pharmacokinetics
 – Blood samples at steady state
 • T = 0, 1, 2, 3, 4 and 8 h
 • SMX concentrations analyzed by LC-MS/MS
 – Calculation of PK parameters (AUC, V_d, Cl, $t_{1/2}$)
 • AUC: non compartmental method (KINFIT, MWPharm)
 • $f_{AUC} = AUC \times 0.23$ (unbound fraction)
 – One compartment POPPK model
 • SMX concentrations and patient characteristics (KINPOP, MWPharm)

• AUC/MIC and f_{AUC}/MIC
Methods: safety

- **GI tract**\(^1\)\(^-\)\(^2\)
 - Nausea, vomiting, diarrhea
- **Hepatic injury (grade 3 CTC)**
- **Anemia**\(^3\) (normal Hb: 7.5 – 9.9 (f); 8.7 – 10.6 (m))
- **Blood count abnormalities**
 - Leukocytes (normal: 4*10\(^9\)/L)
 - Plateletes (normal: 150 – 350*10\(^9\)/L)

- **Causality between adverse effect and SXT treatment**\(^4\)
 - Naranjo algorithm,
 - 0 to 9 points, 9 represents the highest likelihood

Results: patients

- DST for SXT 17 MDR isolates
 - 4/17: resistant
 - 3/17: “standard” second-line TB regimen

- MDR-TB patients (10/17)
 - 480 mg SXT once daily
 - Median dose of 6.5 (IQR, 6.1 – 6.8) mg/kg
 - Median period of 381 (IQR, 129 – 465) days
 - 2/10 patients: ↑ 960 mg once daily
Results: patients (2)

• **MDR tuberculosis**
 – Pulmonary TB 8/10 patients

• **Characteristics**
 – Median age 29 (IQR, 24 – 31) years
 – Median BMI 21.1 (IQR, 19.1 – 23.6) kg/m²
Results: PK of SMX

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Plasma (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{0-24} (mg*h/L)</td>
<td>372 (360 – 575)</td>
</tr>
<tr>
<td>Cl (Liter/h)</td>
<td>0.9 (0.5 – 1)</td>
</tr>
<tr>
<td>V (Liter)</td>
<td>11.5 (9.2 – 14.9)</td>
</tr>
<tr>
<td>$T_{1/2}$ (h)</td>
<td>10.1 (8.7 – 10.8)</td>
</tr>
</tbody>
</table>

Data is presented as median (IQR)
Results: POPPK model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl (L.h/1.85 m²)</td>
<td>1.14 ± 0.43</td>
</tr>
<tr>
<td>Vd (L.Kg⁻¹ LbMc)</td>
<td>0.24 ± 0.05</td>
</tr>
<tr>
<td>Ka (h⁻¹)</td>
<td>0.43 ± 0.17</td>
</tr>
<tr>
<td>F (fixed)</td>
<td>1</td>
</tr>
</tbody>
</table>

Data is presented as geometric mean ± sd

- Cross validated population model
- Median AUC underestimation: **0.7** (range, -6.2 – 2.8) %
Results: PK / PD of SMX

- Median MIC for SMX
 - 9.5 (IQR, 4.8 – 25) mg/L

- Geometric mean AUC/MIC
 - 48.4 (IQR, 34.8 – 71.3)

- Geometric mean $fAUC/MIC$
 - 11.1 (IQR, 8 – 16.4)
Results: safety / tolerability

- Well tolerated
- GI tract
 - 1/10 patients: diarrhea and vomiting (naranjo 4)
- No hepatic injury (grade 3 CTC)
- Anemia
 - No clinical relevant decrease in HB
- Blood count abnormalities (naranjo 3)
 - 1/10: leucocytopenia
 - 1/10: mild thrombocytopenia
Discussion: optimal dose?

- **Target: personalized optimal dose**
 - $fAUC_{0-24h}/MIC > 25$, meliodiosis1
 - 1/8 patients $fAUC/MIC > 25$
 - 1dd 480 mg -> 1dd 960 mg?
 - $fAUC/MIC < 25$, SMX no efficient TB agent?
 - Variance within-species2
 - Multiple drug treatment3

1Cheng *et al*; AAC 2009, 2Neurmonberger *et al*; EJCMID 2004, 3Balasubramanian *et al*; AAC 2012
Conclusions

• SXT treatment was well tolerated
• Consistent PK profile in MDR-TB patients

• Further investigation:
 • Target-finding, *in vitro* PK / PD infection model
 • Dose-finding of SXT in TB, prospective clinical trial