Optimization of the rifampicin dosage to improve therapeutic efficacy in tuberculosis treatment, using a murine model

Gerjo de Knecht
PhD student
Dept. of Medical Microbiology and Infectious Disease

5th International workshop on Clinical Pharmacology of TB Drugs
San Francisco, USA
September 8, 2012
Background

The currently used dosage of rifampicin (RIF) (10 mg/kg/day) in treatment of tuberculosis (TB) is based on several trials in the 1970s and 1980s.

The aim of those studies was to investigate how little RIF was needed in addition to a base regimen of isoniazid (INH) and pyrazinamide (PZA), to enable a short-course (6-months) regimen.

The RIF dosage of 10 mg/kg/day appears to be at the lower end of the dose-response curve.

Objectives of the present study

- Determination of the optimal RIF dosage in mice with TB, resulting in a maximum therapeutic effect without adverse effects, including prevention of relapse of infection and emergence of resistance.

- Assessment of pharmacokinetic parameters of increased RIF dosages in mice.
Methods

Different RIF dosages were used to estimate:

- In mice with TB caused by the Beijing-1585 genotype strain\(^2\):
 - the Maximum Tolerated Dosage
 - the dose-dependent effect of RIF, administered as single-drug for 3 weeks
 - the therapeutic efficacy of increasing RIF dosage in combination therapy with INH and PZA administered for 2 months

- In non-infected mice:
 - the pharmacokinetic parameters

\(^2\) de Steenwinkel et al. Antimicrob Agents Chemother. 2012 Sep;56(9):4937-44
Results
Maximum Tolerated Dose (MTD)

In murine TB:

- Increasing RIF dosage from 10 mg/kg/day up to 320 mg/kg/day did not result in impaired kidney function (Creat/Bun).

- RIF dosage of 320 mg/kg/day resulted in:
 - impaired liver function (ALAT/ASAT), below five-times the upper limit of normal according to criteria
 - a strong impact on animal behavior (hyperactivity).

→ MTD of RIF in our mice was defined as 160 mg/kg/day.
Dose-dependent effect of RIF administered as single-drug treatment for 3 weeks

log CFU/organ

<table>
<thead>
<tr>
<th>Treatment (3 wks)</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>8/8</td>
<td>4/4</td>
</tr>
<tr>
<td>10 mg/kg RIF</td>
<td>4/4</td>
<td>4/4</td>
</tr>
<tr>
<td>20 mg/kg RIF</td>
<td>4/4</td>
<td>4/4</td>
</tr>
<tr>
<td>40 mg/kg RIF</td>
<td>4/4</td>
<td>4/4</td>
</tr>
<tr>
<td>80 mg/kg RIF</td>
<td>4/4</td>
<td>4/4</td>
</tr>
<tr>
<td>160 mg/kg RIF</td>
<td>4/4</td>
<td>4/4</td>
</tr>
</tbody>
</table>

de Steenwinkel et al. submitted
Conclusions

- In murine TB a significantly dose-dependent killing activity was observed for RIF after 3 weeks of single-drug treatment ($p=0.0001$ one-way ANOVA).

Next question:

Will increasing the RIF dosage in the combination therapy (INH-RIF-PZA) improve the therapeutic efficacy?
Therapeutic efficacy of increasing RIF dosage administered in combination with INH and PZA

Therapy-duration: 2 months

Lung

- Untreated
- HR(10)Z
- HR(40)Z
- HR(80)Z
- HR(160)Z

de Steenwinkel et al. submitted
Conclusions

In murine TB:

- A significantly dose-dependent killing activity was observed for RIF at single-drug treatment after 3 weeks

- An 8-fold increase in RIF dosage up to 80 mg/kg/day was well tolerated and allowed reduction of therapy duration from 6 to 2 months
Pharmacokinetic parameters of RIF

<table>
<thead>
<tr>
<th>Dose (mg/kg/day)</th>
<th>$fAUC_{0-24h}$ (mg/L*h)</th>
<th>C_{max} (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIF as single drug</td>
<td>10</td>
<td>4.0</td>
</tr>
<tr>
<td>160*</td>
<td>59.4</td>
<td>142.1</td>
</tr>
</tbody>
</table>

* MTD

de Steenwinkel *et al.* submitted
Pharmacokinetics parameters of RIF

<table>
<thead>
<tr>
<th>Dose (mg/kg/day)</th>
<th>$fAUC_{0-24h}$ (mg/L*h)</th>
<th>C_{max} (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIF as single drug</td>
<td>10</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>160*</td>
<td>59.4</td>
</tr>
<tr>
<td>RIF in combination</td>
<td>10</td>
<td>4.2</td>
</tr>
<tr>
<td>RIF-INH-PZA</td>
<td>160*</td>
<td>57.0</td>
</tr>
</tbody>
</table>

* MTD

de Steenwinkel et al. submitted
Conclusions

In murine TB:

- A significantly dose-dependent killing activity was observed for RIF at single-drug treatment after 3 weeks.

- An 8-fold increase in RIF dosage up to 80 mg/kg/day was well tolerated and allowed reduction of therapy duration from 6 to 2 months.

- Increase of RIF dosage resulted in a similar increase of f_{AUC} and almost similar increase of C_{max}.
Summarizing conclusions

In murine TB:

- A significantly dose-dependent killing activity was observed for RIF at single-drug treatment after 3 weeks.

- An 8-fold increase in RIF dosage up to 80 mg/kg/day was well tolerated and allowed reduction of therapy duration from 6 to 2 months.

- Increase of RIF dosage resulted in a similar increase of \(fAUC \) and almost similar increase of \(C_{\text{max}} \).

- This study is a proof of concept for the clinical studies on tolerability and efficacy of increased RIF dosages in TB patients.
Acknowledgements

• Marian ten Kate
• Irma Bakker-Woudenberg
• Henri Verbrugh
• Jurriaan de Steenwinkel

Erasmus MC
University Medical Center Rotterdam

• Rob Aarnoutse
• Marga Teulen
• Martin Boeree

UMC St Radboud

• Dick van Soolingen

RIVM
National Institute for Public Health and the Environment