Lopinavir and Efavirenz Concentrations in Hair Samples as a Marker of Cumulative Exposure among Postpartum Women and Breastfeeding Infants in Uganda

Jane Achan, Deborah Cohan, Francesca Aweeka, Julia Mwesigwa, Yong Huang, Albert Plenty, Edwin Charlebois, Theodore Ruel, Veronica Ades, Tamara D. Clark, Paul Natureeba, Moses R. Kamya, Diane V. Havlir, Monica Gandhi

Makerere University College of Health Sciences
University of California San Francisco

Background

- Increasing numbers of women in Africa receive ARVs during pregnancy and breastfeeding

- Determining kinetics of antiretroviral transfer from mother to infant during these different time periods is important

- 2º exposure to baby may determine protection, toxicities and resistance

Knowledge gap: How much exposure *in utero* and during breastfeeding?
Background

- ARV levels in plasma or breast milk reflect exposure over short time intervals
 - Day to day variations within an individual
 - “White-coat” effects

- Measuring concentrations of drug in hair is an alternative novel approach
 - Reflects drug uptake from the systemic circulation over weeks or months
 - Cumulative measure of exposure (and adherence) to chronically administered medications
 - Hair is easier than blood to collect in infants

Single blood levels to measure exposure just “snapshots”

Antiretroviral levels over 12 hours

Concentration (mg/L)

Time in hours

[Graph showing antiretroviral levels over 12 hours]
Hair concentrations measure “extended-exposure”

Plasma

Hair level averages plasma levels

Hair

Analogy: HbA1c versus single glucose levels
Hair assays for ARVs

• Integrated measure: behavior (adherence) and biology (PK)
• 10-20 strands for assay (normal hair loss ~100/day)
• Easy to collect, store and ship without biohazard
• Assays developed for EFV, NVP, LPV, RTV, ATV, TFV, FTC, RAL, DRV
• Good linearity ($R^2 > 0.99$), reproducibility (CV <15%)
• Strongest independent predictor of outcomes in treated individuals

Methods

• Prevention of Malaria and HIV disease in Tororo (PROMOTE) study

• HIV-infected, ART naïve pregnant women enrolled between 12-28 weeks of gestation

• Women randomized to receive either LPV/r or EFV-based therapy

• We measured hair and plasma concentrations of relevant ARVs in mothers and their infants at several time points
Plasma and hair ARV levels

• At 12 weeks postpartum: 45 mother/infant pairs LPV/r; 64 pairs EFV

• Hair sampling:
 – ARVs extracted from ~20 strands of hair collected from mothers and infants
 – Entire length of baby hair sample analyzed (reflects exposure from beginning of hair growth \textit{in utero})
 – Mother’s hair cut down to 1cm (~ 1 month of growth)

• Plasma samples drawn at same visit

• Concentrations measured using liquid chromatography and tandem mass spectrometry

• Ratios of infant: maternal concentration in hair and plasma were calculated
Ratio of infant: maternal hair concentrations after 12 weeks of BF

<table>
<thead>
<tr>
<th>ARV</th>
<th>n (pairs)</th>
<th>Mean maternal hair [] (ng/mg)</th>
<th>Mean infant hair [] (ng/mg)</th>
<th>Infant/maternal [] (mean of ratios)</th>
<th>95% CI</th>
<th>Range of ratios (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopinavir</td>
<td>45</td>
<td>5.91</td>
<td>5.13</td>
<td>0.867</td>
<td>0.700 - 1.03</td>
<td>0.621- 2.44</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>43</td>
<td>0.53</td>
<td>0.14</td>
<td>0.471</td>
<td>0.247 - 0.694</td>
<td>0.059 - 4.45</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>64</td>
<td>6.44</td>
<td>1.94</td>
<td>0.396</td>
<td>0.303 - 0.488</td>
<td>0.058- 2.34</td>
</tr>
</tbody>
</table>
Ratio of infant: maternal plasma concentrations after 12 weeks of BF

<table>
<thead>
<tr>
<th>ARV</th>
<th>n (pairs)</th>
<th>Mean maternal plasma [] (ng/mL)</th>
<th>Mean infant plasma [] (ng/mL)</th>
<th>Infant/maternal [] (mean of ratios)</th>
<th>95% CI</th>
<th>Range of ratios (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopinavir</td>
<td>59</td>
<td>6805</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No peaks</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>52</td>
<td>359</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No peaks</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>50</td>
<td>3041</td>
<td>297</td>
<td>0.149</td>
<td>0.121-0.177</td>
<td>0.034-1.14</td>
</tr>
</tbody>
</table>

- No detectable lopinavir or ritonavir peaks found in any of the 12 week plasma samples
- Infant:maternal efavirenz ratios (mean) 0.149
Hair ratios vs. plasma ratios – implications

Plasma levels of LPV/r in infants undetectable at 12 wks yet high infant:maternal hair ratios
 – 87% mothers exclusively and 100% mostly breastfeeding

• Suggests significant transfer of LPV/r in utero, but minimal or no transfer during breastfeeding

• Ratios suggest moderate transfer of EFV both in utero (~2/3) and during breastfeeding (~1/3)
Discussion

• Hair assays for ARVs present an important approach as a measure of cumulative drug exposure
 – In conjunction with plasma levels, provide unique insight into the timing of ARV exposure in infants

• Findings consistent with sparse data in literature suggesting LPV/r and EFV transfer in utero, but limited transfer of LPV/r during breastfeeding\(^1\)\(^{-}\)\(^{10}\)

• Implications for infant protection, toxicities, resistance (if transmission)

Next steps

- Hair levels from infants at time of birth
 ✓ Measure of exclusively *in utero* exposure

- Filter paper and plasma – infants and mothers at 0 and 8 weeks
 ✓ Better comparisons of *in utero* exposure vs. exposure during breast feeding

- Adverse events
 ✓ Relationship between levels and AEs
Acknowledgements

• Funding:
 – NICHD/NIH P01 HD059454 (Havlir) – PROMOTE
 • Additional funding by PEPFAR and OAR supplement to PROMOTE
 – NIAID/NIH RO1 AI098472 (Gandhi) - Hair levels, analyses
 – Study drug (LPV/r) provided by Abbott

• Participants of the PROMOTE trial (pregnant women and infants), the PROMOTE study team, midwives of Tororo district hospital.

• Poster TUPE057 AIDS 2012, July 24 12:30-14:30