Pharmacokinetics and acceptability of a new generic lopinavir/ritonavir sprinkle formulation compared with syrup/tablets in African, HIV-infected infants and children according to WHO weight-band dose recommendations (CHAPAS-2)

Rosette Keishanyu, Quirine Fillekes, Philip Kasirye, Lindsay Kendall, Bethany (Naidoo) James, Victor Musiime, Jennie Ong, Rachel Namuddu, Natalie Young, Eva Natukunda, Mohammed Lamorde, Margaret Thomason, David Burger, Adeodata Kekitiinwa, Diana M.Gibb, on behalf of the CHAPAS 2 trial team
Introduction

• Protease Inhibitor based ART in children is used:
 − Second-line following NNRTI+2NRTI
 − First line in infants (particularly following perinatal exposure to nevirapine for PMTCT) [1]

• Use of second-line ART remains low (<4%) [2] but is increasing in resource-limited settings:
 − Limited experience
 − Lack of appropriate formulations
 − Lopinavir/ritonavir (LPV/r) is only co-formulated PI:
 o Ritonavir liquid is very unpalatable and smallest solid formulation is 100mg

1. WHO Paediatric ART guidelines (2010)
2. UNAIDS/UNICEF (2010)
Lopinavir/ritonavir formulations

- Liquid formulation (80/20mg per ml)
 - Requires refrigeration
 - Has unpleasant taste
 - Expensive

- Tablet formulation
 - Adult (200/50mg) and paediatric (100/25mg) tablets are large
 - They must not be crushed/split (lose 45-47% bioavailability) [3]
 - Some children cannot swallow whole tablets

- Few PK data in infants or in African children

Lopinavir/ritonavir sprinkles

- Using melt extrusion technology, Cipla Pharmaceuticals, India, developed LPV/r (40/10mg) as a sprinkle formulation
 - Appropriate for even the smallest children, as it allows the drug to be easily mixed in with food
 - Stored in capsules for easy administration; no need for refrigeration
 - Bioavailability proven in healthy adults (CROI 2012 poster 982)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Formulation</th>
<th>Number of tablets/sprinkle capsules/ml by weight band (kg) twice daily</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3-<4kg</td>
</tr>
<tr>
<td>LPV/r</td>
<td>Sprinkle 40/10mg</td>
<td>-</td>
</tr>
<tr>
<td>LPV/r</td>
<td>Tablets 100/25mg</td>
<td>-</td>
</tr>
<tr>
<td>LPV/r</td>
<td>Syrup 80/20 mg/ml</td>
<td>1.5ml</td>
</tr>
</tbody>
</table>

*tablets cannot be broken
The CHAPAS 2 trial: objectives

1. To determine and compare the PK of LPV/r in a twice daily paediatric co-formulated fixed dose sprinkle (Cipla) combination:
 - Versus twice daily paediatric co-formulated fixed dose tablet (Cipla) in 24 HIV-infected children aged 4-12 years
 - Versus twice daily paediatric co-formulated syrup (Abbott) in 16 HIV-infected infants under 1 year of age
 - All formulations given with food

2. To compare the formulation preferences of:
 - Sprinkle versus tablets among older children and carers
 - Sprinkle versus syrup among infants’ carers
CHAPAS 2 trial design
PK Studies 1 and 2

PK Study-1
HIV-1 infected children
aged 4 -13 years
(<25kg)* (n=24)

PK Study-2
HIV-1 infected infants
3 months - <12 months** (n=16)

* Children on or about to start Tablets and can definitely swallow them
** Infants on or about to start Syrups

PK day: time = 0, 1, 2, 4, 6, 8 & 12 hours after observed intake with food

At week 8, children/carers chose which formulation to continue
Results

Baseline characteristics

Child Demographics

<table>
<thead>
<tr>
<th></th>
<th>PK study-1 (n=29)</th>
<th>PK study-2 (n=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>6.2 (5.8-8.0)</td>
<td>0.5 (0.4-0.6)</td>
</tr>
<tr>
<td>Male, n</td>
<td>13 (45%)</td>
<td>6 (43%)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>113 (107-118)</td>
<td>62 (60-65)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>19.3 (17.9-20.9)</td>
<td>6.4 (6.1-6.7)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>15.2 (14.2-15.7)</td>
<td>17.1 (15.3-17.6)</td>
</tr>
<tr>
<td>CD4%</td>
<td>32 (26 to 38)</td>
<td>25 (17 to 29)</td>
</tr>
<tr>
<td>Height-for-age z-score</td>
<td>-1.24 (-2.06 to -0.33)</td>
<td>-1.86 (-2.57 to -0.78)</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>-0.82 (-1.81 to -0.13)</td>
<td>-1.10 (-1.44 to -0.71)</td>
</tr>
</tbody>
</table>

Continuous values are median (interquartile range, IQR), categorical values are n (%)
Pharmacokinetic results
Tablets vs Sprinkles (4-13 years)

- LPV exposure in **sprinkles** comparable to historical data in children
- LPV exposure in **tablets** is higher than in sprinkles
- Variability all PK parameters is moderately high; CV%: 29 - 49%

<table>
<thead>
<tr>
<th>PK parameter</th>
<th>Tablets</th>
<th>Sprinkles</th>
<th>GMR (90% CI)</th>
<th>Historical data in children</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{AUC}_{0-12h}) (h.mg/L)</td>
<td>115.6 (103.3-129.8)</td>
<td>83.1 (66.7-103.5)</td>
<td>0.72 (0.60-0.86)</td>
<td>72.6 (41.5-103.7)</td>
</tr>
<tr>
<td>(\text{Cmax}) (mg/L)</td>
<td>13.9 (12.9-15.1)</td>
<td>10.3 (8.6-12.2)</td>
<td>0.74 (0.64-0.85)</td>
<td>8.2 (5.3-11.1)</td>
</tr>
<tr>
<td>(\text{C12h}) (mg/L)</td>
<td>4.4 (3.3-5.9)</td>
<td>2.6 (1.7-4.1)</td>
<td>0.59 (0.43-0.81)</td>
<td>3.4 (1.3-5.5)</td>
</tr>
</tbody>
</table>
Pharmacokinetic results

Syrup vs Sprinkles (<1 year)

<table>
<thead>
<tr>
<th>PK parameter</th>
<th>Syrup</th>
<th>Sprinkles</th>
<th>GMR (90% CI)</th>
<th>Historical data in children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GM (95% CI)</td>
<td>GM (95% CI)</td>
<td>Sprinkle:tablet</td>
<td></td>
</tr>
<tr>
<td>AUC$_{0-12h}$ (h.mg/L)</td>
<td>62.5 (35.6-109.7)</td>
<td>70.9 (41.8-120.2)</td>
<td>1.13 (0.62-2.06)</td>
<td>72.6 (41.5-103.7)</td>
</tr>
<tr>
<td>Cmax (mg/L)</td>
<td>9.3 (6.2-13.9)</td>
<td>9.1 (6.1-13.7)</td>
<td>0.98 (0.65-1.49)</td>
<td>8.2 (5.3-11.1)</td>
</tr>
<tr>
<td>C12h (mg/L)</td>
<td>2.1 (0.9-5.1)</td>
<td>3.4 (2.1-5.7)</td>
<td>1.62 (0.67-3.96)</td>
<td>3.4 (1.3-5.5)</td>
</tr>
</tbody>
</table>

- Exposure LPV in sprinkles comparable to the Abbott oral solution and historical data.
- Variability is high; CV%: 62-66%
Subtherapeutic PK values

- Sub-therapeutic trough levels in:
 - 4 (16%) sprinkles versus 1 (4%) tablets (p-value=0.35)
 - 0 (0%) sprinkles versus 3 (27%) syrup (p-value=0.21)
For older children already established on tablets:

- Tablets had better taste
- 22/29 (76%) chose to continue tablets
Sprinkles were:

- Better to swallow
- Storage/transport important advantage for caregivers
- 10/14 (71%) chose to continue sprinkles

Acceptability
Percent reporting problems (<1 year n=14)

Syrup:
- taste
- swallowing
- storing the medicine
- transporting bottles
- vomiting the medicine
- conspicuous
- weight of bottles
- volume of medicine
- opening the bottles
- number of bottles
- taking whole dose
- knowing which bottle contains which drug
- losing/breaking capsule/tables
- losing/breaking bottles

Sprinkles:
- Better to swallow
- Storage/transport important advantage for caregivers
- 10/14 (71%) chose to continue sprinkles
Discussion and conclusions

• Exposure to LPV/r from sprinkles was comparable with syrup in infants and with historical data
• Exposure to LPV/r from tablets was higher than sprinkles in older children
• Variability in LPV/r PK parameters was high in all formulations
 – High prevalence of sub-therapeutic levels, but no sign of difference between formulation groups
 – Virological response data not available (awaited)
• For infants, sprinkles were more acceptable than syrups
• For older children already able to swallow tablets, tablets were more acceptable than sprinkles
 – Taste of sprinkle was a concern
Next steps for CHAPAS 2

- Two further cohorts ongoing/planned in CHAPAS 2:
 - Young children aged 1-4 years on or starting syrups
 - Acceptability of improved granule formulation with better taste masking
Acknowledgements

• The families and children participating in the CHAPAS-2 trial

• Study teams
 − Joint Clinical Research Centre, Kampala, Uganda
 − Baylor-Uganda, Paediatric Infectious Disease Centre, Mulago Hospital, Uganda
 − Medical Research Council Clinical Trials Unit, London, UK
 − Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

• Funding: Monument Trust, UK

• Study medication: Cipla Pharmaceuticals, India