Lifestyle Variables and Age-Related Cognitive Changes

Robert S. Wilson, PhD
Rush Alzheimer’s Disease Center
Rush University Medical Center
Chicago, Illinois, USA

3rd International Workshop on HIV & Aging
Baltimore, Maryland, USA
November 6, 2012
Acknowledgments

Collaborators:
Neelum T. Aggarwal, MD
Steven E. Arnold, MD
Lisa L. Barnes, PhD
David A. Bennett, MD
Patricia A. Boyle, PhD
Aron S. Buchman, MD
Denis A. Evans, MD
Liesi E. Hebert, ScD
Loren P. Hizel, BA
Carlos F. Mendes de Leon, PhD
Sukriti Nag, MD, PhD
Paul S. Scherr, PhD, ScD
Julie A. Schneider, MD
Eisuke Segawa, PhD
Raj C. Shah, MD
Lei Yu, PhD

Funding: National Institute on Aging, Illinois Department of Public Health

Disclosures: none
Objectives

• Cognitive aging overview
• Cognitive reserve model of cognitive aging
• Cognitively stimulating activity and cognitive reserve
• Neural reserve
Cognitive Aging

• Cognitive impairment in old age (<65)
 ~ 10% dementia
 ~ 20% mild cognitive impairment
 ~ 20% with intact cognition but pathologic AD

• Rate of cognitive decline in old age associated with increased morbidity (e.g., disability, hospitalization) and mortality
Models of Cognitive Aging

• Normal and Pathological
 – Neuropathologic lesions related to all phases of cognitive aging, especially early phases.

• Cognitive/Neural Reserve & Pathological
 – Cognitive aging partitioned into variability related to pathology and residual variability (which is cognitive reserve)
Cognitive Reserve

Neuropathologic Lesions

Change in Cognitive Function
Lifestyle and Cognitive Decline

• Activity Frequency
 Cognitive activity
 Social activity
 Physical activity

• Personality
 Neuroticism
 Conscientiousness
 Purpose in life
Cognitively Stimulating Activity

• Measurement
• Association with cognitive outcomes
Cognitive Stimulating Activity

• Measurement
• Association with cognitive outcomes
• Direction of association
Cognitively Stimulating Activity

• Measurement
• Association with cognitive outcomes
• Direction of association
• Association with cognitive reserve
Rush Memory and Aging Project

- 578 deaths/1661 participants
- 456/578 (79%) brain autopsy
- Neuropathologic examination complete in first 440
- Exclusions:
 - 27 with dementia at baseline, 23 without longitudinal cognitive data, 83 missing cognitive activity data, 13 missing pathologic data
- Study group n = 294
 - Age at death 89.3 (5.9)
 - Education 14.4 (2.7)
 - % women 67.7
 - Years followed 5.8 (2.7)
Cognitive Reserve Hypothesis

• Cognitive Activity
 - late life
 - early life

• Neuropathological examination
 - amyloid
 - tangles
 - neocortical Lewy bodies
 - gross cerebral infarction
 - microscopic cerebral infarction
Cognitive Reserve Hypothesis

<table>
<thead>
<tr>
<th></th>
<th>residual variance</th>
<th>total variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropathologic burden</td>
<td>-</td>
<td>33%</td>
</tr>
<tr>
<td>Late life cognitive activity</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>Early life cognitive activity</td>
<td>9%</td>
<td>6%</td>
</tr>
<tr>
<td>Early + late life cognitive activity</td>
<td>14%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Childhood Cognitive Activity

Young Adulthood Cognitive Activity

Middle Age Cognitive Activity

Old Age Cognitive Activity
Figure 1 Composition of study cohort sampled from community population.

Longitudinal cognitive testing of population:

1 → 2 → 3 → 4 → 5

Clinical evaluation of different population subsets:

1 → 2 → 3 → 4 → 5

Composition of study cohort:

1,508 clinically classified
- 253 died before follow-up
- 98 lost to follow-up
- 1,157 with longitudinal cognitive function data from population interview
Neural Reserve

• Longitudinal neuroimaging studies
• Key neural circuits
 • Brainstem aminergic nuclei
Summary

• Cognitive impairment is common in old age
• Neuropathologic lesions traditionally associated with dementia
 – Related to all phases of cognitive aging
 – Account for <50% of variance in cognitive aging
• Level of cognitive activity across the lifespan accounts for substantial residual variability in cognitive aging
• Understanding the neurobiologic mechanisms linking patterns of activity to cognitive reserve may suggest novel strategies for optimizing cognitive function in older persons with chronic neurologic conditions