CYP2B6 Activity in HIV-infected Children and Adolescents: Pharmacokinetic Evaluation of Efavirenz and its 8-hydroxymetabolite

Natella Rakhmanina, MD, PhD1, 2, Heather Gordish-Dressman1, John van den Anker1, 2, Keetra Williams, BSN, RN1, Steven Rossi3,4, Edmund Capparelli3,4

1Children’s National Medical Center, 2The George Washington University, Washington, DC, 3School of Medicine, 4Skaggs School of Pharmacy, University of California San Diego, La Jolla, CA USA
INTRODUCTION

- Efavirenz (EFV) is widely used in pediatric and adolescent populations worldwide
- Superior efficacy when compared to Nevirapine in large (716 children) African pediatric cohort (Lowenthal E. et al, Abstract 965, CROI 2012)
- Substrate of CYP2B6 with some involvement of CYP3A, CYP1A2, and CYP2A6
- CYP2B6 (G516T) polymorphisms result in large variability in EFV exposure among infants (Bolton C. et al, IMPAACT P1070, Abstract 981, CROI 2012), children and adolescents (Viljoen M. et al., Eur J Clin Pharmacol 2012; Rakhmanina et al., Ther Drug Monit 2010)
INTRODUCTION

- High variability in EFV concentrations with pediatric EFV dosing (Fillekes Q. et al, J Acquir Immune Defic Syndr 2011)
 - Steady-state $C_{(24)} < 1.0$ mg/L in 38% of children (3-12 years old) (median [IR range] 1.1 (0.7-2.9) [0.3-18.4])

- Developmental changes in the CYP2B6 metabolism may have a potential role in sub-therapeutic or high pediatric EFV exposure
METABOLISM of EFV

Desta Z. et al., Pharmacogenomics 2007;8(6):547-58
This study was aimed to evaluate EFV metabolism and CYP2B6 and UGT activity in HIV-infected children and adolescents at different stages of their development.
PATIENTS AND METHODS

• Cross-sectional sub-study of pediatric and adolescent patients (8-18yo) with HIV infection receiving EFV as part of ART

• CYP2B6 genotyping (G419A, A415G, G516T, A785G, T983C, C1459T) - ABI TaqMan assay

• PK samples - at steady-state at 0, 1, 2, 4, 6, 8, 12 and 24 hours after an observed standard EFV dose taken on empty stomach
PATIENTS AND METHODS

- EFV, total (E8T) and free (E8F) 8-hydroxy-EFV measured by solid phase extraction of plasma followed by HPLC-MS/MS method using the Sciex APT-2000
- 8-hydroxy-EFV glucuronide (E8G) estimated after overnight hydrolysis using β-glucuronidase
- Non-compartmental PK analyses
- Non-parametric analysis of the association between the different CYP2B6 516 genotypes and EFV, E8F and E8F+E8G exposures
RESULTS

• 13 patients = 7 girls + 6 boys
• 12 Black + 1 Hispanic
• Median age = 12.8 yrs (8.2-17.4 yrs)
• Median BMI = 20.8 (16.8-26.3)
• CYP2B6 516 genotype (HWE p-value=0.207):
 – GG=6, GT=4, TT=3
• Median weight = 46.8 kg (26.5-69.7 kg)
• EFV dose=600 mg x 8 patients
• EFV dose=300-400 mg x 5 patients
RESULTS

- EFV AUC=62.3 mcg*hr/mL (21.6-271.6)
- EFV CL/F=0.21 L/h/kg (0.047-0.460)
- High EFV AUC (96.3-271.6) + low CL/F (0.047-0.113) in 3 subjects with TT
- Sub-therapeutic $C_{24}(<1.0 \text{ mg/L})$ in 2 subjects with GG
EFFECT of CYP2B6 GENOTYPE and AGE on EFV CL

![Graph showing the effect of CYP2B6 genotype and age on EFV CL](image-url)
RESULTS

• E8G>E8F in all but one subject

• Trend to decreasing E8G/EFV (p=0.075):
 - **GG** - 3.43 (0.00-9.45)
 - **GT** - 2.83 (1.48-6.04)
 - **TT** - 1.03 (0.61-1.38)

• E8G/EFV and E8T/EFV correlated with EFV CL/F (r=0.79 and r=0.74, respectively) while the E8F/EFV ratio did not (r=0.27)
EFFECT of CYP2B6 on EFV METABOLITES/EFV RATIO

![Graph showing the effect of CYP2B6 on EFV metabolites](image-url)
RESULTS

• Highest E8T/EFV in GG genotype 8.97 (2.68-14.41) and lowest in TT genotype 1.04 (0.93-1.60), (p=0.013)

• With GG and GT genotypes combined, significant difference for both E8F/EFV and E8T/EFV was observed with the GG genotype having a greater median than the GT and TT genotype, p=0.046 and p=0.046, respectively
CONCLUSIONS

• EFV PK were highly variable among children and adolescents in our study cohort
• CYP2B6 G516T genotype was directly related to the AUC and CL/F of EFV
• Extensive conversion of E8F \rightarrow E8G limited the usefulness of E8F as a phenotypic probe for CYP2B6 activity
• Ongoing study with repeat within-subject sampling will allow further investigate the full impact of developmental changes on the metabolism of EFV in children and adolescents
ACKNOWLEDGMENTS

• Patients and parents in the study
• Ron H.N. Van Schaik (Erasmus Medical Centrum, Rotterdam, the Netherlands)
• Charles Flexner (JHU, Baltimore, USA)
• Special Immunology Clinic at CNMC
• General Clinical Research Center at CNMC

This work was supported by DHHS NIH PHS grants:
NICHD K231K23HD060452 (Rakhmanina)
NICHD U10HD45993 and NCRR 1K24RR019729 (Van den Anker)
NIAID U01AI68632 and 1U54HD071600-01 (Capparelli)