Management of HIV-infected patients with low level viremia

Annemarie M.J. Wensing, MD, PhD

University Medical Center Utrecht

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Introduction

• In clinical practice low level viremia and isolated blips are frequently observed

• Seems to be more present in recent years
 • Effect of overall better suppression
 • Effect of New Technology
Impact of low level viremia on time to next visit

viremia and viral blips generate uncertainty among clinicians and patients

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Nature of Low level viremia

- Assay Variation or Increased sensitivity
- Production of Virus
- Viral replication
- Discussion over relevance 50 cut-off for failure
• What do the guidelines say?
EACS guidelines

<table>
<thead>
<tr>
<th>Definition</th>
<th>Confirmed plasma HIV RNA > 50 copies/mL 6 months after starting therapy (initiation or modification) in patients that remain on ART (1)</th>
</tr>
</thead>
</table>
| General measures | • Review expected potency of the regimen
• Evaluate adherence, compliance, tolerability, drug-drug interactions, drug-food interactions, psychosocial issues
• Perform resistance testing on failing therapy (usually routinely available for VL levels > 350-500 c/mL and in specialised laboratories for lower levels of viraemia) and obtain historical resistance testing for archived mutations
• Tropism testing
• Consider TDM
• Review antiretroviral history
• Identify treatment options, active and potentially active drugs/combinations |
| Management of virological failure (VF) | If plasma HIV RNA > 50 and < 500-1000 copies/mL
• Check for adherence
• Check plasma HIV RNA 1 to 2 months later
If genotype not possible, consider changing regimen based on past treatment and resistance history
If plasma HIV RNA confirmed > 500/1000 copies/mL, change regimen as soon as possible. What to change will depend on the resistance testing results:
• No resistance mutations found: re-check for adherence, perform TDM
• Resistance mutations found: switch to a suppressive regimen based on drug history |
Optimal viral suppression <20–75 copies/mL

Isolated “blips” (<400 copies/mL) are not uncommon in successfully treated patients and are not thought to represent viral replication or to predict virologic failure [5].

Low-level positive viral load results (<200 copies/mL) appear to be more common with some viral load assays; no definitive evidence that patients are at increased risk for virologic failure [6-8].

<200 cut-off for virological failure may also be useful in clinical practice
On what data are these guidelines based?
DHSS guidelines

- Isolated “blips” (<400 copies/mL) are not uncommon in successfully treated patients and are not thought to represent viral replication or to predict virologic failure [5].

Havlir et al. JAMA 2001
Blips were not indicative for failure in patients on indinavir, lamivudine and zidovudine or stavudine
DHSS guidelines

- Low-level positive viral load results (<200 copies/mL) appear to be more common with some viral load assays; no definitive evidence that patients are at increased risk for virologic failure [6-8].

Two papers with Roche Taqman 1 and one short report in which the assay is not specified.
Does the Assay matter?

TaqMan 1 not generally available in Europe

The versions of the Roche TaqMan assay and Abbott RealTime assay with different cut-offs, calibration standards and test characteristics

Most clinical outcome data with Roche AMPLICOR assay (discontinued)
The International Viral Load Assay Collaboration

- N=4234 actual clinical samples
- 13 sites
- Comparison of four different assays
 - Abbott RealTime
 - Roche AMPLICOR,
 - Roche TaqMan 1
 - Roche TaqMan 2

Samples included tested with at least 2 assays
Amplicor vs Taqman 1

Percentage undetectable by AMPLICOR as function of TaqMan 1

- <40 (N=10)
- 40-49 (N=238)
- 50-74 (N=352)
- 75-99 (N=222)
- 100-124 (N=138)
- 125-149 (N=104)
- 150-174 (N=73)
- 175-199 (N=51)
- 200-249 (N=89)
- 250-499 (N=7)
- >500 (N=100)

100-125

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Amplicor vs Taqman 2

Percentage undetectable by Amplicor as function of Taqman 2

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Nature of low level viremia

- What is the nature?
 - Assay variation
 - Possibly increased sensitivity of the new assays
What is the clinical relevance?
Time to virologic rebound according to the T0 viral load

© The Author 2012. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Methods

Group A:
Patients with low-level viremia

Group B:
Patients with a single viral blip

Control group:
Patients with consistently suppressed VL

Analysis of viral loads in preceding year

• RNA detected (VL 1 - 50)
• Target Not Detected (TND: <1)

Hofstra EACS 2011

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Analysis of VL results in preceding year

- Group A (LLV)
- Group B (blip)
- Control group

TND in all VL determinations (VL<1 cp/mL)
RNA detected (1-50) / TND (<1)
RNA detected in all VL determinations (1 - 50 cp/mL)

Hofstra EACS 2011

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Clinical significance

• Are blips and low-level viremia associated with virological failure?

• In current literature no consensus:
 • *Increased risk of virological failure*
 • *Viral blips* ¹-⁴
 • *Low-level viremia* ², ⁵-⁷
 • *No association* ⁸-¹³
 • *Association with emergence of new drug resistant variants* ¹²,¹³

Development of Resistance: evidence Viral replication

<table>
<thead>
<tr>
<th>ART regimen</th>
<th>Pretreatment CD4 count (cells/mm³)</th>
<th>Pretreatment VL (log₁₀ copies/mL)</th>
<th>Pretreatment RAM</th>
<th>RAM during low-level viremia</th>
<th>VL at time of RAM detection (copies/mL)</th>
<th>Week of treatment when RAM was detected</th>
<th>Follow-up VL after low-level viremia while on initial treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2NRTI + EFV</td>
<td>327</td>
<td>3.2</td>
<td>V90I, V179D/V</td>
<td>M184V M230L/M</td>
<td>112</td>
<td>33</td>
<td>VF</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>636</td>
<td>4.7</td>
<td></td>
<td>M184V</td>
<td><50*</td>
<td>67</td>
<td>VF</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>37</td>
<td>4.8</td>
<td></td>
<td>K101E, K103N, M184V M230L</td>
<td>76</td>
<td>58</td>
<td>VL <50 copies/mL</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>373</td>
<td>4.6</td>
<td>K103N, V106I, G190A T121Y</td>
<td>M184V (A62A/V)</td>
<td>101</td>
<td>32</td>
<td>Off treatment right after low-level viremia</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>6</td>
<td>4.9</td>
<td></td>
<td>V106I</td>
<td>120</td>
<td>32</td>
<td>VL <50 copies/mL and then VF</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>192</td>
<td>5.3</td>
<td></td>
<td>K103N, M230L</td>
<td>105</td>
<td>72</td>
<td>VL <50 copies/mL</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>71</td>
<td>6.4</td>
<td></td>
<td>M184V</td>
<td>8,322***</td>
<td>144</td>
<td>Off treatment right after low-level viremia</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>201</td>
<td>4.2</td>
<td></td>
<td>Y188C (D67D/N)</td>
<td>203</td>
<td>96</td>
<td>VF</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>14</td>
<td>5.9</td>
<td></td>
<td>K70K/R</td>
<td>105</td>
<td>33</td>
<td>Off treatment right after low-level viremia</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>304</td>
<td>4.2</td>
<td></td>
<td>K103N, M184V, G190A</td>
<td>494</td>
<td>26</td>
<td>One VL >1000 copies/mL and one VL <50 copies/mL</td>
</tr>
<tr>
<td>3NRTI + EFV</td>
<td>284</td>
<td>4.1</td>
<td></td>
<td>L74V, K103N, Y115F, M184V</td>
<td>368</td>
<td>111</td>
<td>Off treatment right after low-level viremia</td>
</tr>
<tr>
<td>3NRTI + EFV</td>
<td>16</td>
<td>5.0</td>
<td></td>
<td>K103N, M184V, P225H/P</td>
<td>238</td>
<td>32</td>
<td>One VL <50 copies/mL, then low-level viremia range</td>
</tr>
<tr>
<td>2NRTI + EFV</td>
<td>267</td>
<td>4.6</td>
<td></td>
<td>K103N, M184V (V108I)</td>
<td>460</td>
<td>82</td>
<td>VF</td>
</tr>
<tr>
<td>2NRTI + LPV</td>
<td>74</td>
<td>4.8</td>
<td></td>
<td>V75I</td>
<td>253</td>
<td>64</td>
<td>VL <50 copies/mL*****</td>
</tr>
<tr>
<td>2NRTI + LPV</td>
<td>88</td>
<td>5.8</td>
<td></td>
<td>M184V</td>
<td>362</td>
<td>80</td>
<td>No information available</td>
</tr>
<tr>
<td>3NRTI + EFV</td>
<td>52</td>
<td>6.0</td>
<td></td>
<td>K103N, M184V (P225H)</td>
<td>417</td>
<td>48</td>
<td>VF******</td>
</tr>
<tr>
<td>3NRTI + EFV</td>
<td>27</td>
<td>5.5</td>
<td></td>
<td>K103N (M184V)</td>
<td>531</td>
<td>73</td>
<td>VF</td>
</tr>
</tbody>
</table>

*References: Taiwo JID 2011

Presented at the 10th Eu Meeting on HIV & Hepatitis, 28-30 March 2012, Barcelona
Conclusion

In case of low level viremia:

- Check Adherence
- Perform Drug levels, food intake
- Perform Resistance Testing
- Check Therapy History
- Think about other compartments

- Consider the genetic barrier of the regimen
- In patients with low genetic barrier regimens try to switch therapy
Acknowledgements

• Linos VandeKerckhove
• Marije Hofstra
• Richard Harrison/Luke Swenson

The International Viral Load Assay Collaboration