Deep sequencing analysis of naturally occurring mutations associated with resistance to HCV NS3 protease inhibitors

Gary Wang, MD PhD
Assistant Professor of Medicine
Division of Infectious Diseases
University of Florida College of Medicine
Hepatitis C virus quasispecies

Flavivirus: enveloped, positive strand, RNA viruses

- HCV replication is extremely robust
 - 1 trillion viral particles produced per day
- HCV, like HIV, circulates as a quasispecies in infected individuals
 - quasispecies = closely related but genetically diverse sequences
 - error-prone polymerase (NS5B)

HCV drug resistance

• Both mathematical models and observations from clinical trials suggest that mutations conferring resistance to DAA pre-exist within HCV populations

• Given the quasispecies nature of circulating HCV, the viral swarms may harbor mutations at low frequencies not readily detectable by conventional sequencing methods

• Drug resistant variants can occur naturally and circulate as dominant quasispecies, and can persist long-term *in vivo* (e.g. R155K)

• Lessons from HIV: presence of pre-existing drug resistant mutations is associated with treatment failure

• HCV replication produces large and complex populations, and naturally occurring drug-resistant variants within viral quasispecies may impact therapy using DAA
Study Aim

• The abundance and the temporal dynamics of drug resistance variants, especially the low abundance variants, have not been investigated in detail
• We examined the prevalence, abundance, and temporal dynamics of pre-existing mutations associated protease resistance

Approach

• Ultra-deep, high-throughput sequencing (the Roche/454 method) of partial NS3 gene fragments
• Comparison with population sequencing, and molecular clonal sequencing
Subjects and samples

- Cross-sectional
 - 9 subjects with chronic HCV
 - 6 G1a and 3 G1b

- Longitudinal:
 - 13 subjects with chronic HCV who underwent liver transplantation
 - 10 G1a and 3 G1b
 - For each subject
 - 2 pre-transplant samples
 - 2-3 post-transplant samples
 - 53 transplant samples

- Technical control: in vitro transcript of the NS3 gene from H77C sequence cloned in a plasmid
Methods

- All RNA templates were quantified by qPCR
- RT-PCR generated ~650 base pair NS3 gene segment
- Each PCR sample is tagged with a unique barcode
 - Allows pooling of samples for pyrosequencing runs
- Queried 10 positions associated with protease resistance
 - Amplicon A: amino acid 1-91
 - V36A/M/L, Q41R, F43S, T54A, V55A, Q80R/K
 - Amplicon B: amino acid 94-173
Sequence processing pipeline

• Exact match to the barcode and primer sequences
• > 290 bases in sequence length
• No ambiguous base (N’s)
• Multiple sequence alignment
• Quality control - manual inspection
• Deep sequencing amplified products from *in vitro* transcripts of known sequences to estimate technical error rates from RT-PCR and pyrosequencing

Pyrosequencing results

• A total of ~735,000 high-quality sequence reads available for analysis
• Good representation of all barcodes/samples
Summary of drug resistance alleles: population sequencing

• Population sequencing of NS3 in 22 subjects with chronic HCV:
 – 15 subjects (68%) with no major PI mutations
 – 5 subjects with Q80K
 – 1 subject with Q80K/V55A
 – 1 subject with Q80K/V36L

• Consistent with previous observation based on population sequencing analysis that the prevalence of high-level naturally occurring protease-inhibitor-resistant variants is low
Summary of drug resistance alleles detected by deep sequencing

Genotype 1a
(n=16)

Genotype 1b
(n=6)

* drug resistance alleles detected by population sequencing

Summary of drug resistance alleles detected: longitudinal samples from liver transplant

G1a (n=9)

G1b (n=3)

Subjects 1 2 3 4 5 6 7 8 9 10 11 12

Time
Evolution of the dominant viral quasispecies

Selective sweep

Selective sweep by new sequences:
A minor quasispecies in the earlier time points becomes the major variant post-transplant
Evolution of the dominant viral quasispecies

No selective sweep

No selective sweep:
A major quasispecies remains the dominant variant post-transplant

Liver transplantation
Conclusions

• Naturally occurring variants harboring mutations associated with protease resistance are more common than previously reported

• Most resistant variants circulate at low frequencies (except for Q80K) not readily detectable by standard population sequencing – these minor variants can be detected by deep sequencing

• Variants conferring high-level resistance to protease inhibitors were uncommon

• Drug resistant variants are highly dynamic in vivo, which may be related to immune suppression associated with liver transplantation

• The biological relevance of low-frequency, drug resistant quasispecies should be further investigated, and their temporal stability characterized
Acknowledgements

Wang Lab, University of Florida

Mariana Kirst, PhD
Eric Li, MS
Cindy Wang, BS
Vijay Antharam, PhD
Lisa Zhao, MS
Enrique Sanchez, MS

Collaborators

University of Florida
David Nelson, MD
Chen Liu, MD PhD
Hui-Jia Dong, PhD

Liver Center, University of North Carolina
Michael Fried, MD