Dose-ranging activity of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis

Rokeya Tasneen¹, Charles Peloquin², Khisi Mdluli³, Eric Nuermerberger¹

¹Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD
²College of Pharmacy, University of Florida, Gainesville, FL
³Global Alliance for TB Drug Development, New York, NY
Background

• Animal models play a vital role in developing new TB drugs and regimens
• Mouse models are economical, highly tractable, and have a good track record in predicting the activity of existing TB drugs
• However, lack of caseating granulomas and cavitation in mice raises concerns about their ability to predict results in humans
Necrotizing granulomas in C3HeB/FeJ ("Kramnik") mice

- Susceptibility allele at *sst1*
- Candidate gene is *lpr1*
- The cell death pathway in *Mtb*-infected *lpr1*-negative macrophages is necrosis rather than apoptosis
- Mice are not otherwise immunodeficient
- Utility as a preclinical efficacy model requires further study

Pan et al, Nature 2005
Apt & Kramnik, Tuberculosis 2009

Davis et al, AAC 2010
Comparative activity of escalating doses of rifampin (R) and rifapentine (P) when combined with INH-PZA (HZ)

Drug regimen	Percentage (proportion) of mice with positive cultures 3 months after stopping treatment for:
 | 8 weeks | 10 weeks | 12 weeks |
--------------|--------|----------|----------|
R₂₀HZ | ND | 100% (15/15) | 67% (10/15) |
P₅HZ | ND | 100% (15/15) | 67% (10/15) |
R₄₀HZ | ND | 27% (4/15) | 0% (0/15) |
P₁₀HZ | 100% (15/15) | 33% (5/15) | 0% (0/15) |
Presented at the 4th International Workshop on Clinical Pharmacology of TB Drugs, 16 September 2011, Chicago, IL, USA

Schema of TBTC Study 29

Sputum smear (+) PTB suspect

Randomization

- **RIF 10 mg/kg**
 - INH+PZA+EMB
 - 5/7 for 8 weeks without food

- **RPT 10 mg/kg**
 - INH+PZA+EMB
 - 5/7 for 8 weeks without food

End of intensive phase (≈ wk 8): assess for primary endpoints

ATS/CDC/IDSA-recommended continuation phase regimen
Efficacy: Primary Endpoints (TBTC Study 29)

% of subjects having negative sputum cultures at end of intensive phase in the **Protocol Correct** analysis group

<table>
<thead>
<tr>
<th>Culture Medium</th>
<th>Rifampin</th>
<th>Rifapentoin</th>
<th>p</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>liquid</td>
<td>128/179</td>
<td>152/202</td>
<td>0.48</td>
<td>3.7 (-5.7, 13.2)</td>
</tr>
<tr>
<td></td>
<td>71.5%</td>
<td>75.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solid</td>
<td>152/171</td>
<td>182/198</td>
<td>0.42</td>
<td>3.0 (-3.6, 9.6)</td>
</tr>
<tr>
<td></td>
<td>88.9%</td>
<td>91.9%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why was the efficacy of the RPT regimen not superior? (some possible explanations)

• PK/PD
 – RPT exposures were lower in TB pts compared to mice
 – but so were RIF exposures
 – Drug effect may be different in human vs. murine TB
 – Is protein binding greater in humans?
 – Does RPT penetrate poorly into necrotic lesions compared to RIF?
 – Does RPT’s superior accumulation intracellularly, where bacilli reside in mice, lead to overestimation of its effect in humans?
Why was the efficacy of the RPT regimen not superior? (some possible explanations)

• PK/PD
 – RPT exposures were lower in TB pts compared to mice
 – but so were RIF exposures
 – Drug effect may be different in human vs. murine TB
 – Is protein binding greater in humans?
 – Does RPT penetrate poorly into necrotic lesions compared to RIF?
 – Does RPT’s superior accumulation intracellularly, where bacilli reside in mice, lead to overestimation of its effect in humans?

• Efficacy Endpoint (cx status at 2 months)
 – May have suboptimal discriminatory power
 – May not be optimally reflective of “sterilizing activity”
Why was the efficacy of the RPT regimen not superior? (some possible explanations)

• PK/PD
 – RPT exposures were lower in TB pts compared to mice
 – but so were RIF exposures
 – Drug effect may be different in human vs. murine TB
 – Is protein binding greater in humans?
 – Does RPT penetrate poorly into necrotic lesions compared to RIF?
 – Does RPT’s superior accumulation intracellularly, where bacilli reside in mice, lead to overestimation of its effect in humans?

• Efficacy Endpoint (cx status at 2 months)
 – May have suboptimal discriminatory power
 – May not be optimally reflective of “sterilizing activity”
Comparison of rifamycin activity against intracellular and extracellular *M. tb*

Intracellular accumulation ratio is 5x greater for P vs. R

Extracellular bacilli: RPT 2x more potent than RMP
Intracellular bacilli: RPT 16x more potent than RMP

Mor et al, AAC 1995
Objective

• Compare the activity of R vs. P in BALB/c vs. C3HeB/FeJ mice, in terms of:
 – Dose-ranging activity when administered alone, and
 – Activity when administered at 10 mg/kg in combination with HZE
Experimental scheme*

<table>
<thead>
<tr>
<th>Group</th>
<th>W-6</th>
<th>D0</th>
<th>M1 (+3)</th>
<th>M2 (+3)</th>
<th>M3 (+3)</th>
<th>M4 (+3)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>R(_{10})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>R(_{20})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>R(_{40})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>RZHE</td>
<td>5</td>
<td>5</td>
<td>5 (15)</td>
<td>(15)</td>
<td>(15)</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>P(_{5})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>P(_{10})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>P(_{20})</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>PZHE</td>
<td>5 (15)</td>
<td>5 (15)</td>
<td>(15)</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>4</td>
<td>34 (15)</td>
<td>34 (30)</td>
<td>(30)</td>
<td>(15)</td>
<td>186</td>
</tr>
</tbody>
</table>

*Scheme conducted simultaneously in BALB/c and C3HeB/FeJ mice

Presented at the 4th International Workshop on Clinical Pharmacology of TB Drugs, 16 September 2011, Chicago, IL, USA
R and P have similar activity in both strains.
Equipotent doses are similar in both mouse strains.
RHZE vs. PHZE in 2 mouse strains

Presented at the 4th International Workshop on Clinical Pharmacology of TB Drugs, 16 September 2011, Chicago, IL, USA
Relapse results*

<table>
<thead>
<tr>
<th>Drug regimen</th>
<th>Mouse strain</th>
<th>1 month</th>
<th>2 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{10}HZE</td>
<td>BALB/c</td>
<td>ND</td>
<td>100% (15/15)</td>
</tr>
<tr>
<td></td>
<td>C3HeB/FeJ</td>
<td>ND</td>
<td>100% (15/15)</td>
</tr>
<tr>
<td>P_{10}HZE</td>
<td>BALB/c</td>
<td>100% (14/14)</td>
<td>7% (1/15)</td>
</tr>
<tr>
<td></td>
<td>C3HeB/FeJ</td>
<td>100% (13/13)</td>
<td>21% (3/14)</td>
</tr>
</tbody>
</table>

Relapse results after 3 and 4 months of treatment are pending
Efficacy: Post-hoc analysis (TBTC Study 29)
% of subjects having negative sputum cultures at end of intensive phase in the **Protocol Correct** analysis group

<table>
<thead>
<tr>
<th></th>
<th>Rifampin</th>
<th>Rifapentine</th>
<th>p</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIQUID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cavitary</td>
<td>41/57 (71.9)</td>
<td>53/64 (82.8)</td>
<td>0.22</td>
<td>10.9 (-5.7, 27.4)</td>
</tr>
<tr>
<td>Cavitary</td>
<td>87/122 (71.3)</td>
<td>99/138 (71.7)</td>
<td>1.00</td>
<td>0.4 (-11.3, 12.2)</td>
</tr>
<tr>
<td>SOLID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cavitary</td>
<td>50/56 (89.3)</td>
<td>61/61 (100)</td>
<td>0.03</td>
<td>10.7 (0.9, 20.5)</td>
</tr>
<tr>
<td>Cavitary</td>
<td>102/115 (88.7)</td>
<td>121/137 (88.3)</td>
<td>1.00</td>
<td>-0.4 (-8.3, 9.1)</td>
</tr>
</tbody>
</table>

Presented at the 4th International Workshop on Clinical Pharmacology of TB Drugs, 16 September 2011, Chicago, IL, USA
Conclusions

• The presence/absence of necrotic granulomas:
 – did not affect the relative potency of RIF vs. RPT
 – did not affect the outcome of treatment in mice with the regimens evaluated in TBTC Study 29

• Potential explanations for the apparent discrepancy between mouse and human results still include:
 – reduced penetration of RPT relative to RIF into larger necrotic lesions or cavities
 – inadequacies of the surrogate endpoint of sputum culture conversion
Acknowledgments

• **Funding**: U18-FD004004, Global Alliance for TB Drug Development

• **Drug**: sanofi-aventis (RPT)

• **Assistance**: Sanjay Jain, Susan Dorman