Population PK of Isoniazid in South African TB patients

Paolo Denti, Roxana Rustomjee, Thuli Mthiyane, Philip Onyebujoh, Peter Smith, Helen McIlleron

Chicago 16/9/2011
Isoniazid

Isoniazid (INH) is a key drug used for the prevention and treatment of tuberculosis, with a strong early bactericidal activity.

It is acetylated in the liver and small intestine and its clearance is highly dependent on genetic polymorphisms of N-acetyltransferase 2 (NAT2), and trimodality has been previously reported [Parkin et al.].

A large of range of values has been reported for the pharmacokinetic parameters of isoniazid in different populations.

Aim: characterize INH PK in South Africans (from KwaZulu-Natal) using intensively sampled data
Dataset

- 61 South African (KwaZulu-Natal), HIV+, TB patients (33 females and 28 males)

- Isoniazid (together with rifampicin, pyrazinamide, ethambutol in a FDC) was given once daily in the morning. 5 days per week, but 10 patients were dosed 7 days per week.

- About half of the patients received ARVs (Lamivudine, Zidovudine and Efavirenz) from week 2

- **Doses** were adjusted **according to** body weight, **WHO guidelines**

- Samples were taken on
 - day 0, 7, 14 and 28
 - at time 0, 1, 2, 4, 6, 8, 12 hours after dose

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>28 M</td>
<td>33 F</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>55.2</td>
<td>34.4 - 98.7</td>
</tr>
<tr>
<td>Height [m]</td>
<td>1.59</td>
<td>1.41 - 1.81</td>
</tr>
<tr>
<td>Fat Free Mass [kg]</td>
<td>42.2</td>
<td>28.0 - 57.6</td>
</tr>
<tr>
<td>Age [years]</td>
<td>32</td>
<td>18 - 47</td>
</tr>
</tbody>
</table>

Presented at the 4th International Workshop on Clinical Pharmacology of TB Drugs, 16 September 2011, Chicago, IL, USA
Methods

The software NONMEM VII with FOCE-I was employed

Allometric scaling [Anderson and Holford] was used to adjust for body size:
 - total body weight and fat-free mass were tested

Large amount of data below limit of quantification (LOQ):
 - 23% including pre-dose samples, 19% excluding them
 - M6 method [Beal]
 - keep only first or last sample in a series
 - impute to LOQ/2
 - Additive error fixed to LOQ/2 for BLQ samples
 - A simulation showed good results applying this method
Presented at the 4th International Workshop on Clinical Pharmacology of TB Drugs, 16 September 2011, Chicago, IL, USA

Structural Model

- **Dose**
 - Bioavailability \((F)\)
 - Series of transit compartments [Savic et al.]
 - Meat Transit Time (MTT) + Number of Trans Cmpts (NN)
 - 39.6

- **Absorption Cmpt**
 - \(F_{\text{Slow}} = 1\)
 - \(F_{\text{Fast}} = 0.729\)
 - BSV 31.2%
 - BOV 23.8%
 - 0.555 h
 - BOV 45.8%

- **Central Cmpt**
 - CL/V
 - V = 91.0 L

- **Peripheral Cmpt**
 - Q = 17.1 L/h
 - \(V_p = 33.5\) L

- **CL/V**
 - CL_{Slow} = 28.3 L/h
 - CL_{Fast} = 60.9 L/h
 - BSV 18.7%
 - BOV 67.5%

- \(2.07\) h^{-1}
Visual Predictive Check

Isoniazid concentrations [mg/L]

% of BLQ

Time after dose

Presented at the 4th International Workshop on Clinical Pharmacology of TB Drugs, 16 September 2011, Chicago, IL, USA
Parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value</th>
<th>BSV</th>
<th>BOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL/F [L/h]</td>
<td>Slow: 28.3 (12%)
Fast: 60.9 (11%)</td>
<td>18.7% (17%)</td>
<td></td>
</tr>
<tr>
<td>V/F [L]</td>
<td>91.0 (14%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ka [h⁻¹]</td>
<td>2.07 (12%)</td>
<td>67.5% (8%)</td>
<td></td>
</tr>
<tr>
<td>MTT [h]</td>
<td>0.555 (8%)</td>
<td>45.8% (13%)</td>
<td></td>
</tr>
<tr>
<td>NN (transit)</td>
<td>39.6 (32%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q/F [L/h]</td>
<td>17.1 (25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vₚ/F [L]</td>
<td>33.5 (15%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F (bioavailability)</td>
<td>Slow: 1 (FIX)
Fast: 0.729 (12%)</td>
<td>31.2% (19%)</td>
<td>23.8% (8%)</td>
</tr>
<tr>
<td>% Slow metab.</td>
<td>44.9% (20%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Add: 0.0235 (9%)
Prop: 18.7% (3%)</td>
<td></td>
<td>Error for BLQ data Add: 0.04 (FIX)</td>
</tr>
</tbody>
</table>

CL, Q, V and V₃ are reported for a 42.2 kg fat-free-mass subject, which proved the best predictor.
Discussion

Previously reported PK parameter values:

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>CL & Q (L/h)</th>
<th>V & V_p (L)</th>
<th>Metabolizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilkins et al. (NONMEM)</td>
<td>235 South African TB patients (parameter values for 70kg WT)</td>
<td>CL_{Slow}: 9.70 CL_{Fast}: 21.6 Q: 3.34</td>
<td>V: 57.7 V_p: 1730</td>
<td>Slow: 86.8% Fast: 13.2% Mixture model</td>
</tr>
<tr>
<td>Peloquin et al. (IT2B results)</td>
<td>24 male Caucasian healthy subjects (med WT 77kg)</td>
<td>CL_{Slow}: 14.5 CL_{Fast}: 50.0 Only 1 cmpt</td>
<td>V_{Slow}: 67 V_{Fast}: 90 Only 1 cmpt</td>
<td>Slow: 66.6% Fast: 33.3% t½ < or > 2 h</td>
</tr>
<tr>
<td>Kinzig-Schippers et al. (NONMEM)</td>
<td>18 Caucasian healthy subjects (med WT 74kg)</td>
<td>CL_{Slow}: 10.0 CL_{Inter}: 19.2 CL_{Fast}: 28.4 Q: 44.3</td>
<td>V: 22.1 V_p: 35.2</td>
<td>Slow: 72.2% Inter: 11.1% Fast: 16.6%</td>
</tr>
</tbody>
</table>

Previously reported frequencies for acetylation status:

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loktionov et al.</td>
<td>101 Black S. African (NW province)</td>
<td>Slow: 39.6% - Fast: 60.4%</td>
</tr>
<tr>
<td>Parkin et al.</td>
<td>60 Mixed Race S. African (W. Cape)</td>
<td>Slow: 35% - Inter: 45% - Fast: 20%</td>
</tr>
<tr>
<td>Shaaf et al.</td>
<td>64 Black S. African (W. Cape)</td>
<td>Slow: 39.0% - Inter: 37.5% - Fast: 23.4%</td>
</tr>
</tbody>
</table>
Conclusions

• CL was characterized by a mixture of faster and slower metabolizers
 • Slow 28 L/h
 • Fast 61 L/h

• Faster metabolizers also have lower bioavailability (73% of slower metab.), possibly due to higher first-pass metabolism

• The highest dose of INH in our dataset (375mg) has higher bioavailability, possibly due to saturation of first-pass metabolism

• Limitation: No actual data on acetylator status or metabolite concentration

• Future plans
 • Measurement of INH metabolite to characterize phenotype
 • Genotyping of patients
Acknowledgments

• The patients participating in the studies

• WHO and TDR, which sponsored the TB-HAART study

• The UCT Pharmacology lab for performing the assays

• The PKPDia consortium and the Wellcome Trust for funding me

• Virology education for sponsoring my attendance of this workshop

• All my colleagues in the pharmacometrics lab at the UCT Division of Clinical Pharmacology