Pharmacokinetics of Two Common Antiretroviral Regimens in Older HIV-Infected Patients: A Pilot Study

Julie B. Dumond, Jessica L. Adams, Heather M.A. Prince, Racheal Kendrick, Ruili Wang, Steven Jennings, Stephanie Malone, Amanda H. Corbett, Kristine B. Patterson, Alan Forrest, Angela D.M. Kashuba

University of North Carolina at Chapel Hill, Chapel Hill, NC

Abstract O_12

2nd International Workshop on HIV and Aging
Background

• By 2015, 50% of the U.S. HIV-infected population will be ≥ 50 years old\(^1\)

• Treatment outcomes:\(^2\)
 – Excellent virologic response
 – Blunted immune response

• Role of altered PK?
 – Known changes in physiology
 – Has not been systematically explored

Study Objective

• Describe PK of 2 common regimens in non-frail HIV+ patients ≥55 years
 – Tenofovir/emtricitabine/efavirenz (TFV/FTC/EFV)
 – Tenofovir/emtricitabine/atazanavir/ritonavir (TFV/FTC/ATV/r)

• Support future long-term population PK/PD studies

PK: Pharmacokinetics; PD: Pharmacodynamics
Inclusion/Exclusion Criteria

Inclusion

- ≥55 years of age
- On study regimen for ≥2 weeks
- Adherent to medications
 - ≥90% of doses in 30 days

Exclusion

- Frailty phenotype
- Concomitant medication expected to cause a significant change in Cmax and/or AUC
- Clinically significant lab abnormalities
 - DAIDS Grade 2 or higher

Cmax: maximal concentration; AUC: area under the concentration-time curve

Presented at the 2nd Int. workshop on HIV & Aging, 27 – 28 Oct 2011, Baltimore, USA
Study Design

- Screening Visit: informed consent, adherence assessment, safety labs, frailty phenotyping

- PK Visit:

- Follow-up visit: CBC, adverse events

CBC: Complete blood count
Data Analysis

- Drug concentrations
 - HPLC/UV \(^1, 2\)
- Noncompartmental Analysis
 - Phoenix Win Nonlin
- PK Modeling
 - MC-PEM in S-ADAPT with S-ADAPT TRAN\(^3\)
- Nonparametric Statistics
 - SAS JMP 7; alpha = 0.05

1. Rezk NL et al. *Journal of Chromatography B* 2005
2. Rezk NL et al. *Journal of Chromatography B* 2004
Results: Demographics (mean ± SD)

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>TFV/FTC/EFV Subjects (n = 6)</th>
<th>TFV/FTC/ATV/r Subjects (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>60.7 ± 5.4</td>
<td>58.7 ± 1.4</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>3 (50%)</td>
<td>3 (50%)</td>
</tr>
<tr>
<td>African American</td>
<td>3 (50%)</td>
<td>3 (50%)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>4 (66.7%)</td>
<td>2 (33.3%)</td>
</tr>
<tr>
<td>Male</td>
<td>2 (33.3%)</td>
<td>4 (66.7%)</td>
</tr>
<tr>
<td>Duration with HIV (yrs)</td>
<td>14.3 ± 10.3</td>
<td>8.4 ± 3.9</td>
</tr>
<tr>
<td>Duration on current regimen (yrs)</td>
<td>3.5 ± 3.65</td>
<td>3.4 ± 1.7</td>
</tr>
<tr>
<td>CD4+ T-cell count (cells/mm³)</td>
<td>683 ± 226</td>
<td>952 ± 455</td>
</tr>
<tr>
<td>HIV RNA <50 copies/mL</td>
<td>5/6</td>
<td>6/6</td>
</tr>
<tr>
<td>Creatinine clearance (ml/min)</td>
<td>69.4 ± 25.0</td>
<td>70.9 ± 7.46</td>
</tr>
</tbody>
</table>

p = NS
TFV PK

Tenofovir Concentration vs. Time:
TFV/FTC/EFV

Kiser JJ et al, JAIDS 2008

Tenofovir Concentration vs. Time:
TFV/FTC/ATV/r

Presented at the 2nd Int. workshop on HIV & Aging, 27 – 28 Oct 2011, Baltimore, USA
Rousseau FS et al, JAC 2001
TFV/FTC PK Parameters

median (IQR)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Regimen</th>
<th>C<sub>max</sub> (ug/L)</th>
<th>C<sub>max</sub>: Published Comparator (ug/L)</th>
<th>AUC<sub>0-24hr</sub> (hr*ug/L)</th>
<th>AUC<sub>0-24hr</sub>: Published Comparator (hr*ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFV<sup>1</sup></td>
<td>EFV</td>
<td>295 (223, 421)</td>
<td>340</td>
<td>3430 (3050, 4050)</td>
<td>3710</td>
</tr>
<tr>
<td></td>
<td>ATV/r</td>
<td>319 (275, 417)</td>
<td></td>
<td>3330 (2920, 4230)</td>
<td></td>
</tr>
<tr>
<td>FTC<sup>2</sup></td>
<td>EFV</td>
<td>1780 (1410, 2050)</td>
<td>1410</td>
<td>14 100 (10 300, 19 100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATV/r</td>
<td>1840 (1470, 2130)</td>
<td></td>
<td>10 500 (8540, 12 400)</td>
<td>8010</td>
</tr>
</tbody>
</table>

2. Rousseau FS et al, JAC 2001

Presented at the 2nd Int. workshop on HIV & Aging, 27 – 28 Oct 2011, Baltimore, USA
PK Parameter Ratios

median (IQR)

<table>
<thead>
<tr>
<th>Drug Regimen</th>
<th>TFV</th>
<th>FTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (_{0-24 hr})</td>
<td>↓ 0.92 (0.84, 0.99) ↓ 0.90 (0.82, 0.96) ↑ 1.75 (1.39, 2.23) ↑ 1.31 (1.21, 1.42)</td>
<td></td>
</tr>
<tr>
<td>C(_{max})</td>
<td>↓ 0.87 (0.72, 1.15) ↓ 0.94 (0.85, 1.05) ↑ 1.26 (1.08, 1.35) ↑ 1.31 (1.17, 1.40)</td>
<td></td>
</tr>
</tbody>
</table>
Sustiva Full US Prescribing Information, *Bristol-Myers Squibb; Taburet AM et al*, AAC 2004
EFV, ATV PK Parameters
median (IQR)

<table>
<thead>
<tr>
<th>Drug</th>
<th>C_{max} (ug/L)</th>
<th>C_{max}: Published Comparator (ug/L)</th>
<th>$\text{AUC}_{0-24\text{hr}}$ (hr*ug/L)</th>
<th>$\text{AUC}_{0-24\text{hr}}$: Published Comparator (hr*ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFV1</td>
<td>3403 (2840, 6120)</td>
<td>4070</td>
<td>60 800 (46 000, 96 000)</td>
<td>58 000</td>
</tr>
<tr>
<td>ATV2</td>
<td>3750 (2120, 4610)</td>
<td>3440</td>
<td>34 700 (25 500, 38 500)</td>
<td>39 300</td>
</tr>
</tbody>
</table>

PK Parameter Ratios
median (IQR)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EFV</th>
<th>ATV</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{0-24hr}</td>
<td>\leftrightarrow</td>
<td>↓ 0.88 (0.79, 0.91)</td>
</tr>
<tr>
<td></td>
<td>1.05 (0.83, 1.23)</td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>↓ 0.84 (0.73, 1.24)</td>
<td>↑ 1.09 (0.81, 1.15)</td>
</tr>
</tbody>
</table>

$p = \text{NS}$
PK Modeling

![PK Model Diagram]

<table>
<thead>
<tr>
<th>Drug</th>
<th>TFV₁</th>
<th>FTC²</th>
<th>EFV³</th>
<th>ATV⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CL ± SD</td>
<td>1401 ± 327 (mL/min)</td>
<td>276 ± 57 (mL/min)</td>
<td>2.1 ± 0.8 (mL/min/kg)</td>
<td>184 ± 116 (mL/min)</td>
</tr>
<tr>
<td></td>
<td>807.7 ± 279.2 (mL/min)</td>
<td>168 ± 10 (mL/min)</td>
<td>3 (mL/min/kg)</td>
<td>128 (mL/min)</td>
</tr>
</tbody>
</table>

1. Viread U.S. Prescribing Information
2. Emtriva U.S. Prescribing Information
4. Dickinson L et al, JAC 2009

Presented at the 2nd Int. workshop on HIV & Aging, 27 – 28 Oct 2011, Baltimore, USA
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>TFV</th>
<th>FTC</th>
<th>EFV</th>
<th>ATV</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC_{0-24hr}</td>
<td>↓</td>
<td>↑</td>
<td>↔</td>
<td>↓</td>
</tr>
<tr>
<td>C_{max}</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

- TFV and FTC CL > CrCL
 - Filtration and secretion intact
- CrCL does not explain PK results
 - Decreased TFV, increased FTC
- EFV\(^1\) and ATV results unexpected

Moving Forward…

• Intracellular tenofovir diphosphate/emtricitabine triphosphate PK
• Protein-free EFV and ATV
• Sparse-sampling population PK/PD analysis
 – Frail and non-frail subjects of all ages
• Ultimate goal:
 – Determine if age-specific ARV dosing recommendations are warranted
Acknowledgements

• Study Subjects
• UNC Clinical and Translational Research Center and Infectious Diseases Clinic staff
• Funding sources:
 – Society of Infectious Diseases Pharmacists (JBD)
 – NC TraCS Institute (UL1RR025747; JBD)
 – NIAID/NIH
 • K23AI093156 (JBD), K23AI077355 (KBP)
 • UNC Center for AIDS Research (5P30AI050410-13; JBD, HMAP, RW, SJ, SM, AHC, KBP, ADMK)